R=henrik.lundin@webrtc.org, turaj@webrtc.org Review URL: https://codereview.webrtc.org/1685703004 . Cr-Commit-Position: refs/heads/master@{#11663}
363 lines
12 KiB
C++
363 lines
12 KiB
C++
/*
|
|
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <numeric>
|
|
|
|
#include "webrtc/base/checks.h"
|
|
#include "webrtc/common_audio/include/audio_util.h"
|
|
#include "webrtc/common_audio/window_generator.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
|
|
const size_t kErbResolution = 2;
|
|
const int kWindowSizeMs = 16;
|
|
const int kChunkSizeMs = 10; // Size provided by APM.
|
|
const float kClipFreq = 200.0f;
|
|
const float kConfigRho = 0.02f; // Default production and interpretation SNR.
|
|
const float kKbdAlpha = 1.5f;
|
|
const float kLambdaBot = -1.0f; // Extreme values in bisection
|
|
const float kLambdaTop = -10e-18f; // search for lamda.
|
|
|
|
// Returns dot product of vectors |a| and |b| with size |length|.
|
|
float DotProduct(const float* a, const float* b, size_t length) {
|
|
float ret = 0.f;
|
|
for (size_t i = 0; i < length; ++i) {
|
|
ret = fmaf(a[i], b[i], ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// Computes the power across ERB bands from the power spectral density |pow|.
|
|
// Stores it in |result|.
|
|
void MapToErbBands(const float* pow,
|
|
const std::vector<std::vector<float>>& filter_bank,
|
|
float* result) {
|
|
for (size_t i = 0; i < filter_bank.size(); ++i) {
|
|
RTC_DCHECK_GT(filter_bank[i].size(), 0u);
|
|
result[i] = DotProduct(&filter_bank[i][0], pow, filter_bank[i].size());
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
IntelligibilityEnhancer::TransformCallback::TransformCallback(
|
|
IntelligibilityEnhancer* parent)
|
|
: parent_(parent) {
|
|
}
|
|
|
|
void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock(
|
|
const std::complex<float>* const* in_block,
|
|
size_t in_channels,
|
|
size_t frames,
|
|
size_t /* out_channels */,
|
|
std::complex<float>* const* out_block) {
|
|
RTC_DCHECK_EQ(parent_->freqs_, frames);
|
|
for (size_t i = 0; i < in_channels; ++i) {
|
|
parent_->ProcessClearBlock(in_block[i], out_block[i]);
|
|
}
|
|
}
|
|
|
|
IntelligibilityEnhancer::IntelligibilityEnhancer()
|
|
: IntelligibilityEnhancer(IntelligibilityEnhancer::Config()) {
|
|
}
|
|
|
|
IntelligibilityEnhancer::IntelligibilityEnhancer(const Config& config)
|
|
: freqs_(RealFourier::ComplexLength(
|
|
RealFourier::FftOrder(config.sample_rate_hz * kWindowSizeMs / 1000))),
|
|
window_size_(static_cast<size_t>(1 << RealFourier::FftOrder(freqs_))),
|
|
chunk_length_(
|
|
static_cast<size_t>(config.sample_rate_hz * kChunkSizeMs / 1000)),
|
|
bank_size_(GetBankSize(config.sample_rate_hz, kErbResolution)),
|
|
sample_rate_hz_(config.sample_rate_hz),
|
|
erb_resolution_(kErbResolution),
|
|
num_capture_channels_(config.num_capture_channels),
|
|
num_render_channels_(config.num_render_channels),
|
|
analysis_rate_(config.analysis_rate),
|
|
active_(true),
|
|
clear_power_(freqs_, config.decay_rate),
|
|
noise_power_(freqs_, 0.f),
|
|
filtered_clear_pow_(new float[bank_size_]),
|
|
filtered_noise_pow_(new float[bank_size_]),
|
|
center_freqs_(new float[bank_size_]),
|
|
render_filter_bank_(CreateErbBank(freqs_)),
|
|
rho_(new float[bank_size_]),
|
|
gains_eq_(new float[bank_size_]),
|
|
gain_applier_(freqs_, config.gain_change_limit),
|
|
temp_render_out_buffer_(chunk_length_, num_render_channels_),
|
|
kbd_window_(new float[window_size_]),
|
|
render_callback_(this),
|
|
block_count_(0),
|
|
analysis_step_(0) {
|
|
RTC_DCHECK_LE(config.rho, 1.0f);
|
|
|
|
memset(filtered_clear_pow_.get(),
|
|
0,
|
|
bank_size_ * sizeof(filtered_clear_pow_[0]));
|
|
memset(filtered_noise_pow_.get(),
|
|
0,
|
|
bank_size_ * sizeof(filtered_noise_pow_[0]));
|
|
|
|
// Assumes all rho equal.
|
|
for (size_t i = 0; i < bank_size_; ++i) {
|
|
rho_[i] = config.rho * config.rho;
|
|
}
|
|
|
|
float freqs_khz = kClipFreq / 1000.0f;
|
|
size_t erb_index = static_cast<size_t>(ceilf(
|
|
11.17f * logf((freqs_khz + 0.312f) / (freqs_khz + 14.6575f)) + 43.0f));
|
|
start_freq_ = std::max(static_cast<size_t>(1), erb_index * erb_resolution_);
|
|
|
|
WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_,
|
|
kbd_window_.get());
|
|
render_mangler_.reset(new LappedTransform(
|
|
num_render_channels_, num_render_channels_, chunk_length_,
|
|
kbd_window_.get(), window_size_, window_size_ / 2, &render_callback_));
|
|
}
|
|
|
|
void IntelligibilityEnhancer::SetCaptureNoiseEstimate(
|
|
std::vector<float> noise) {
|
|
if (capture_filter_bank_.size() != bank_size_ ||
|
|
capture_filter_bank_[0].size() != noise.size()) {
|
|
capture_filter_bank_ = CreateErbBank(noise.size());
|
|
}
|
|
if (noise.size() != noise_power_.size()) {
|
|
noise_power_.resize(noise.size());
|
|
}
|
|
for (size_t i = 0; i < noise.size(); ++i) {
|
|
noise_power_[i] = noise[i] * noise[i];
|
|
}
|
|
}
|
|
|
|
void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio,
|
|
int sample_rate_hz,
|
|
size_t num_channels) {
|
|
RTC_CHECK_EQ(sample_rate_hz_, sample_rate_hz);
|
|
RTC_CHECK_EQ(num_render_channels_, num_channels);
|
|
|
|
if (active_) {
|
|
render_mangler_->ProcessChunk(audio, temp_render_out_buffer_.channels());
|
|
}
|
|
|
|
if (active_) {
|
|
for (size_t i = 0; i < num_render_channels_; ++i) {
|
|
memcpy(audio[i], temp_render_out_buffer_.channels()[i],
|
|
chunk_length_ * sizeof(**audio));
|
|
}
|
|
}
|
|
}
|
|
|
|
void IntelligibilityEnhancer::ProcessClearBlock(
|
|
const std::complex<float>* in_block,
|
|
std::complex<float>* out_block) {
|
|
if (block_count_ < 2) {
|
|
memset(out_block, 0, freqs_ * sizeof(*out_block));
|
|
++block_count_;
|
|
return;
|
|
}
|
|
|
|
// TODO(ekm): Use VAD to |Step| and |AnalyzeClearBlock| only if necessary.
|
|
if (true) {
|
|
clear_power_.Step(in_block);
|
|
if (block_count_ % analysis_rate_ == analysis_rate_ - 1) {
|
|
AnalyzeClearBlock();
|
|
++analysis_step_;
|
|
}
|
|
++block_count_;
|
|
}
|
|
|
|
if (active_) {
|
|
gain_applier_.Apply(in_block, out_block);
|
|
}
|
|
}
|
|
|
|
void IntelligibilityEnhancer::AnalyzeClearBlock() {
|
|
const float* clear_power = clear_power_.Power();
|
|
MapToErbBands(clear_power,
|
|
render_filter_bank_,
|
|
filtered_clear_pow_.get());
|
|
MapToErbBands(&noise_power_[0],
|
|
capture_filter_bank_,
|
|
filtered_noise_pow_.get());
|
|
SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get());
|
|
const float power_target = std::accumulate(
|
|
clear_power, clear_power + freqs_, 0.f);
|
|
const float power_top =
|
|
DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_);
|
|
SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get());
|
|
const float power_bot =
|
|
DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_);
|
|
if (power_target >= power_bot && power_target <= power_top) {
|
|
SolveForLambda(power_target, power_bot, power_top);
|
|
UpdateErbGains();
|
|
} // Else experiencing power underflow, so do nothing.
|
|
}
|
|
|
|
void IntelligibilityEnhancer::SolveForLambda(float power_target,
|
|
float power_bot,
|
|
float power_top) {
|
|
const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values
|
|
const int kMaxIters = 100; // for these, based on experiments.
|
|
|
|
const float reciprocal_power_target =
|
|
1.f / (power_target + std::numeric_limits<float>::epsilon());
|
|
float lambda_bot = kLambdaBot;
|
|
float lambda_top = kLambdaTop;
|
|
float power_ratio = 2.0f; // Ratio of achieved power to target power.
|
|
int iters = 0;
|
|
while (std::fabs(power_ratio - 1.0f) > kConvergeThresh &&
|
|
iters <= kMaxIters) {
|
|
const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f;
|
|
SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get());
|
|
const float power =
|
|
DotProduct(gains_eq_.get(), filtered_clear_pow_.get(), bank_size_);
|
|
if (power < power_target) {
|
|
lambda_bot = lambda;
|
|
} else {
|
|
lambda_top = lambda;
|
|
}
|
|
power_ratio = std::fabs(power * reciprocal_power_target);
|
|
++iters;
|
|
}
|
|
}
|
|
|
|
void IntelligibilityEnhancer::UpdateErbGains() {
|
|
// (ERB gain) = filterbank' * (freq gain)
|
|
float* gains = gain_applier_.target();
|
|
for (size_t i = 0; i < freqs_; ++i) {
|
|
gains[i] = 0.0f;
|
|
for (size_t j = 0; j < bank_size_; ++j) {
|
|
gains[i] = fmaf(render_filter_bank_[j][i], gains_eq_[j], gains[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t IntelligibilityEnhancer::GetBankSize(int sample_rate,
|
|
size_t erb_resolution) {
|
|
float freq_limit = sample_rate / 2000.0f;
|
|
size_t erb_scale = static_cast<size_t>(ceilf(
|
|
11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.0f));
|
|
return erb_scale * erb_resolution;
|
|
}
|
|
|
|
std::vector<std::vector<float>> IntelligibilityEnhancer::CreateErbBank(
|
|
size_t num_freqs) {
|
|
std::vector<std::vector<float>> filter_bank(bank_size_);
|
|
size_t lf = 1, rf = 4;
|
|
|
|
for (size_t i = 0; i < bank_size_; ++i) {
|
|
float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_));
|
|
center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp));
|
|
center_freqs_[i] -= 14678.49f;
|
|
}
|
|
float last_center_freq = center_freqs_[bank_size_ - 1];
|
|
for (size_t i = 0; i < bank_size_; ++i) {
|
|
center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq;
|
|
}
|
|
|
|
for (size_t i = 0; i < bank_size_; ++i) {
|
|
filter_bank[i].resize(num_freqs);
|
|
}
|
|
|
|
for (size_t i = 1; i <= bank_size_; ++i) {
|
|
size_t lll, ll, rr, rrr;
|
|
static const size_t kOne = 1; // Avoids repeated static_cast<>s below.
|
|
lll = static_cast<size_t>(round(
|
|
center_freqs_[std::max(kOne, i - lf) - 1] * num_freqs /
|
|
(0.5f * sample_rate_hz_)));
|
|
ll = static_cast<size_t>(round(
|
|
center_freqs_[std::max(kOne, i) - 1] * num_freqs /
|
|
(0.5f * sample_rate_hz_)));
|
|
lll = std::min(num_freqs, std::max(lll, kOne)) - 1;
|
|
ll = std::min(num_freqs, std::max(ll, kOne)) - 1;
|
|
|
|
rrr = static_cast<size_t>(round(
|
|
center_freqs_[std::min(bank_size_, i + rf) - 1] * num_freqs /
|
|
(0.5f * sample_rate_hz_)));
|
|
rr = static_cast<size_t>(round(
|
|
center_freqs_[std::min(bank_size_, i + 1) - 1] * num_freqs /
|
|
(0.5f * sample_rate_hz_)));
|
|
rrr = std::min(num_freqs, std::max(rrr, kOne)) - 1;
|
|
rr = std::min(num_freqs, std::max(rr, kOne)) - 1;
|
|
|
|
float step, element;
|
|
|
|
step = ll == lll ? 0.f : 1.f / (ll - lll);
|
|
element = 0.0f;
|
|
for (size_t j = lll; j <= ll; ++j) {
|
|
filter_bank[i - 1][j] = element;
|
|
element += step;
|
|
}
|
|
step = rr == rrr ? 0.f : 1.f / (rrr - rr);
|
|
element = 1.0f;
|
|
for (size_t j = rr; j <= rrr; ++j) {
|
|
filter_bank[i - 1][j] = element;
|
|
element -= step;
|
|
}
|
|
for (size_t j = ll; j <= rr; ++j) {
|
|
filter_bank[i - 1][j] = 1.0f;
|
|
}
|
|
}
|
|
|
|
float sum;
|
|
for (size_t i = 0; i < num_freqs; ++i) {
|
|
sum = 0.0f;
|
|
for (size_t j = 0; j < bank_size_; ++j) {
|
|
sum += filter_bank[j][i];
|
|
}
|
|
for (size_t j = 0; j < bank_size_; ++j) {
|
|
filter_bank[j][i] /= sum;
|
|
}
|
|
}
|
|
return filter_bank;
|
|
}
|
|
|
|
void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda,
|
|
size_t start_freq,
|
|
float* sols) {
|
|
bool quadratic = (kConfigRho < 1.0f);
|
|
const float* pow_x0 = filtered_clear_pow_.get();
|
|
const float* pow_n0 = filtered_noise_pow_.get();
|
|
|
|
for (size_t n = 0; n < start_freq; ++n) {
|
|
sols[n] = 1.0f;
|
|
}
|
|
|
|
// Analytic solution for optimal gains. See paper for derivation.
|
|
for (size_t n = start_freq - 1; n < bank_size_; ++n) {
|
|
float alpha0, beta0, gamma0;
|
|
gamma0 = 0.5f * rho_[n] * pow_x0[n] * pow_n0[n] +
|
|
lambda * pow_x0[n] * pow_n0[n] * pow_n0[n];
|
|
beta0 = lambda * pow_x0[n] * (2 - rho_[n]) * pow_x0[n] * pow_n0[n];
|
|
if (quadratic) {
|
|
alpha0 = lambda * pow_x0[n] * (1 - rho_[n]) * pow_x0[n] * pow_x0[n];
|
|
sols[n] =
|
|
(-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) /
|
|
(2 * alpha0 + std::numeric_limits<float>::epsilon());
|
|
} else {
|
|
sols[n] = -gamma0 / beta0;
|
|
}
|
|
sols[n] = fmax(0, sols[n]);
|
|
}
|
|
}
|
|
|
|
bool IntelligibilityEnhancer::active() const {
|
|
return active_;
|
|
}
|
|
|
|
} // namespace webrtc
|