webrtc_m130/modules/pacing/task_queue_paced_sender.cc
Per Kjellander 88af20356f Use ProbeClusterConfig in BitrateProber from GoogCC
Instead of using field trials in BitrateProber for probe duration, use values provided in ProbeClusterConfig from GoogCC.
Field trials are instead read in ProbeController.

To avoid having to do a thread jump for every ProbeClusterConfig, RtpPacketPacer interface is changed to RtpPacketPacer::CreateProbeClusters(std::vector<ProbeClusterConfig>

Deprecates field trial  "WebRTC-Bwe-ProbingConfiguration"

Change-Id: I3991e4b54770601855a3af2d6a16678f11d41c31
Bug: webrtc:14027
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/261265
Reviewed-by: Erik Språng <sprang@webrtc.org>
Commit-Queue: Per Kjellander <perkj@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#36911}
2022-05-17 12:29:25 +00:00

330 lines
11 KiB
C++

/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/pacing/task_queue_paced_sender.h"
#include <algorithm>
#include <utility>
#include "absl/memory/memory.h"
#include "api/transport/network_types.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/experiments/field_trial_units.h"
#include "rtc_base/trace_event.h"
namespace webrtc {
namespace {
constexpr const char* kSlackedTaskQueuePacedSenderFieldTrial =
"WebRTC-SlackedTaskQueuePacedSender";
} // namespace
const int TaskQueuePacedSender::kNoPacketHoldback = -1;
TaskQueuePacedSender::SlackedPacerFlags::SlackedPacerFlags(
const FieldTrialsView& field_trials)
: allow_low_precision("Enabled"),
max_low_precision_expected_queue_time("max_queue_time") {
ParseFieldTrial(
{&allow_low_precision, &max_low_precision_expected_queue_time},
field_trials.Lookup(kSlackedTaskQueuePacedSenderFieldTrial));
}
TaskQueuePacedSender::TaskQueuePacedSender(
Clock* clock,
PacingController::PacketSender* packet_sender,
const FieldTrialsView& field_trials,
TaskQueueFactory* task_queue_factory,
TimeDelta max_hold_back_window,
int max_hold_back_window_in_packets)
: clock_(clock),
slacked_pacer_flags_(field_trials),
max_hold_back_window_(slacked_pacer_flags_.allow_low_precision
? PacingController::kMinSleepTime
: max_hold_back_window),
max_hold_back_window_in_packets_(slacked_pacer_flags_.allow_low_precision
? 0
: max_hold_back_window_in_packets),
pacing_controller_(clock, packet_sender, field_trials),
next_process_time_(Timestamp::MinusInfinity()),
is_started_(false),
is_shutdown_(false),
packet_size_(/*alpha=*/0.95),
include_overhead_(false),
task_queue_(task_queue_factory->CreateTaskQueue(
"TaskQueuePacedSender",
TaskQueueFactory::Priority::NORMAL)) {
RTC_DCHECK_GE(max_hold_back_window_, PacingController::kMinSleepTime);
}
TaskQueuePacedSender::~TaskQueuePacedSender() {
// Post an immediate task to mark the queue as shutting down.
// The rtc::TaskQueue destructor will wait for pending tasks to
// complete before continuing.
task_queue_.PostTask([&]() {
RTC_DCHECK_RUN_ON(&task_queue_);
is_shutdown_ = true;
});
}
void TaskQueuePacedSender::EnsureStarted() {
task_queue_.PostTask([this]() {
RTC_DCHECK_RUN_ON(&task_queue_);
is_started_ = true;
MaybeProcessPackets(Timestamp::MinusInfinity());
});
}
void TaskQueuePacedSender::CreateProbeClusters(
std::vector<ProbeClusterConfig> probe_cluster_configs) {
task_queue_.PostTask(
[this, probe_cluster_configs = std::move(probe_cluster_configs)]() {
RTC_DCHECK_RUN_ON(&task_queue_);
pacing_controller_.CreateProbeClusters(probe_cluster_configs);
MaybeProcessPackets(Timestamp::MinusInfinity());
});
}
void TaskQueuePacedSender::Pause() {
task_queue_.PostTask([this]() {
RTC_DCHECK_RUN_ON(&task_queue_);
pacing_controller_.Pause();
});
}
void TaskQueuePacedSender::Resume() {
task_queue_.PostTask([this]() {
RTC_DCHECK_RUN_ON(&task_queue_);
pacing_controller_.Resume();
MaybeProcessPackets(Timestamp::MinusInfinity());
});
}
void TaskQueuePacedSender::SetCongested(bool congested) {
task_queue_.PostTask([this, congested]() {
RTC_DCHECK_RUN_ON(&task_queue_);
pacing_controller_.SetCongested(congested);
MaybeProcessPackets(Timestamp::MinusInfinity());
});
}
void TaskQueuePacedSender::SetPacingRates(DataRate pacing_rate,
DataRate padding_rate) {
task_queue_.PostTask([this, pacing_rate, padding_rate]() {
RTC_DCHECK_RUN_ON(&task_queue_);
pacing_controller_.SetPacingRates(pacing_rate, padding_rate);
MaybeProcessPackets(Timestamp::MinusInfinity());
});
}
void TaskQueuePacedSender::EnqueuePackets(
std::vector<std::unique_ptr<RtpPacketToSend>> packets) {
#if RTC_TRACE_EVENTS_ENABLED
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("webrtc"),
"TaskQueuePacedSender::EnqueuePackets");
for (auto& packet : packets) {
TRACE_EVENT2(TRACE_DISABLED_BY_DEFAULT("webrtc"),
"TaskQueuePacedSender::EnqueuePackets::Loop",
"sequence_number", packet->SequenceNumber(), "rtp_timestamp",
packet->Timestamp());
}
#endif
task_queue_.PostTask([this, packets_ = std::move(packets)]() mutable {
RTC_DCHECK_RUN_ON(&task_queue_);
for (auto& packet : packets_) {
size_t packet_size = packet->payload_size() + packet->padding_size();
if (include_overhead_) {
packet_size += packet->headers_size();
}
packet_size_.Apply(1, packet_size);
RTC_DCHECK_GE(packet->capture_time(), Timestamp::Zero());
pacing_controller_.EnqueuePacket(std::move(packet));
}
MaybeProcessPackets(Timestamp::MinusInfinity());
});
}
void TaskQueuePacedSender::SetAccountForAudioPackets(bool account_for_audio) {
task_queue_.PostTask([this, account_for_audio]() {
RTC_DCHECK_RUN_ON(&task_queue_);
pacing_controller_.SetAccountForAudioPackets(account_for_audio);
MaybeProcessPackets(Timestamp::MinusInfinity());
});
}
void TaskQueuePacedSender::SetIncludeOverhead() {
task_queue_.PostTask([this]() {
RTC_DCHECK_RUN_ON(&task_queue_);
include_overhead_ = true;
pacing_controller_.SetIncludeOverhead();
MaybeProcessPackets(Timestamp::MinusInfinity());
});
}
void TaskQueuePacedSender::SetTransportOverhead(DataSize overhead_per_packet) {
task_queue_.PostTask([this, overhead_per_packet]() {
RTC_DCHECK_RUN_ON(&task_queue_);
pacing_controller_.SetTransportOverhead(overhead_per_packet);
MaybeProcessPackets(Timestamp::MinusInfinity());
});
}
void TaskQueuePacedSender::SetQueueTimeLimit(TimeDelta limit) {
task_queue_.PostTask([this, limit]() {
RTC_DCHECK_RUN_ON(&task_queue_);
pacing_controller_.SetQueueTimeLimit(limit);
MaybeProcessPackets(Timestamp::MinusInfinity());
});
}
TimeDelta TaskQueuePacedSender::ExpectedQueueTime() const {
return GetStats().expected_queue_time;
}
DataSize TaskQueuePacedSender::QueueSizeData() const {
return GetStats().queue_size;
}
absl::optional<Timestamp> TaskQueuePacedSender::FirstSentPacketTime() const {
return GetStats().first_sent_packet_time;
}
TimeDelta TaskQueuePacedSender::OldestPacketWaitTime() const {
Timestamp oldest_packet = GetStats().oldest_packet_enqueue_time;
if (oldest_packet.IsInfinite()) {
return TimeDelta::Zero();
}
// (webrtc:9716): The clock is not always monotonic.
Timestamp current = clock_->CurrentTime();
if (current < oldest_packet) {
return TimeDelta::Zero();
}
return current - oldest_packet;
}
void TaskQueuePacedSender::OnStatsUpdated(const Stats& stats) {
MutexLock lock(&stats_mutex_);
current_stats_ = stats;
}
void TaskQueuePacedSender::MaybeProcessPackets(
Timestamp scheduled_process_time) {
RTC_DCHECK_RUN_ON(&task_queue_);
#if RTC_TRACE_EVENTS_ENABLED
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("webrtc"),
"TaskQueuePacedSender::MaybeProcessPackets");
#endif
if (is_shutdown_ || !is_started_) {
return;
}
Timestamp next_send_time = pacing_controller_.NextSendTime();
RTC_DCHECK(next_send_time.IsFinite());
const Timestamp now = clock_->CurrentTime();
TimeDelta early_execute_margin =
pacing_controller_.IsProbing()
? PacingController::kMaxEarlyProbeProcessing
: TimeDelta::Zero();
// Process packets and update stats.
while (next_send_time <= now + early_execute_margin) {
pacing_controller_.ProcessPackets();
next_send_time = pacing_controller_.NextSendTime();
RTC_DCHECK(next_send_time.IsFinite());
// Probing state could change. Get margin after process packets.
early_execute_margin = pacing_controller_.IsProbing()
? PacingController::kMaxEarlyProbeProcessing
: TimeDelta::Zero();
}
UpdateStats();
// Ignore retired scheduled task, otherwise reset `next_process_time_`.
if (scheduled_process_time.IsFinite()) {
if (scheduled_process_time != next_process_time_) {
return;
}
next_process_time_ = Timestamp::MinusInfinity();
}
// Do not hold back in probing.
TimeDelta hold_back_window = TimeDelta::Zero();
if (!pacing_controller_.IsProbing()) {
hold_back_window = max_hold_back_window_;
DataRate pacing_rate = pacing_controller_.pacing_rate();
if (max_hold_back_window_in_packets_ != kNoPacketHoldback &&
!pacing_rate.IsZero() &&
packet_size_.filtered() != rtc::ExpFilter::kValueUndefined) {
TimeDelta avg_packet_send_time =
DataSize::Bytes(packet_size_.filtered()) / pacing_rate;
hold_back_window =
std::min(hold_back_window,
avg_packet_send_time * max_hold_back_window_in_packets_);
}
}
// Calculate next process time.
TimeDelta time_to_next_process =
std::max(hold_back_window, next_send_time - now - early_execute_margin);
next_send_time = now + time_to_next_process;
// If no in flight task or in flight task is later than `next_send_time`,
// schedule a new one. Previous in flight task will be retired.
if (next_process_time_.IsMinusInfinity() ||
next_process_time_ > next_send_time) {
// Prefer low precision if allowed and not probing.
TaskQueueBase::DelayPrecision precision =
slacked_pacer_flags_.allow_low_precision &&
!pacing_controller_.IsProbing()
? TaskQueueBase::DelayPrecision::kLow
: TaskQueueBase::DelayPrecision::kHigh;
// Optionally disable low precision if the expected queue time is greater
// than `max_low_precision_expected_queue_time`.
if (precision == TaskQueueBase::DelayPrecision::kLow &&
slacked_pacer_flags_.max_low_precision_expected_queue_time &&
pacing_controller_.ExpectedQueueTime() >=
slacked_pacer_flags_.max_low_precision_expected_queue_time
.Value()) {
precision = TaskQueueBase::DelayPrecision::kHigh;
}
task_queue_.PostDelayedTaskWithPrecision(
precision,
[this, next_send_time]() { MaybeProcessPackets(next_send_time); },
time_to_next_process.RoundUpTo(TimeDelta::Millis(1)).ms<uint32_t>());
next_process_time_ = next_send_time;
}
}
void TaskQueuePacedSender::UpdateStats() {
Stats new_stats;
new_stats.expected_queue_time = pacing_controller_.ExpectedQueueTime();
new_stats.first_sent_packet_time = pacing_controller_.FirstSentPacketTime();
new_stats.oldest_packet_enqueue_time =
pacing_controller_.OldestPacketEnqueueTime();
new_stats.queue_size = pacing_controller_.QueueSizeData();
OnStatsUpdated(new_stats);
}
TaskQueuePacedSender::Stats TaskQueuePacedSender::GetStats() const {
MutexLock lock(&stats_mutex_);
return current_stats_;
}
} // namespace webrtc