Per Åhgren b20b93796f AEC3: Refactor the code for analyzing filter convergence
This CL refactors the code in AEC3 that analyzes how
well the adaptive filter performs. The purpose of this
is both to simplify code that is more complex than needed
and also to pave the wave for the upcoming CLs that
softens the echo suppression during doubletalk.

The main changes are that:
-The shadow adaptive filter is now never analyzed. This
turned out to never affect the output in the recordings
it was tested on.
-The convergence analysis was moved to the aec state
code.

The changes are bitexact on all testcases where they
have been tested on.

Bug: webrtc:8671
Change-Id: If76b669565325c8eb4d11d1178a7e20306da9a26
Reviewed-on: https://webrtc-review.googlesource.com/87430
Commit-Queue: Per Åhgren <peah@webrtc.org>
Reviewed-by: Sam Zackrisson <saza@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#23958}
2018-07-12 23:13:08 +00:00

255 lines
9.3 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/subtractor.h"
#include <algorithm>
#include <numeric>
#include "api/array_view.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
bool EnableAdaptationDuringSaturation() {
return !field_trial::IsEnabled("WebRTC-Aec3RapidAgcGainRecoveryKillSwitch");
}
bool EnableMisadjustmentEstimator() {
return !field_trial::IsEnabled("WebRTC-Aec3MisadjustmentEstimatorKillSwitch");
}
void PredictionError(const Aec3Fft& fft,
const FftData& S,
rtc::ArrayView<const float> y,
std::array<float, kBlockSize>* e,
std::array<float, kBlockSize>* s,
bool adaptation_during_saturation,
bool* saturation) {
std::array<float, kFftLength> tmp;
fft.Ifft(S, &tmp);
constexpr float kScale = 1.0f / kFftLengthBy2;
std::transform(y.begin(), y.end(), tmp.begin() + kFftLengthBy2, e->begin(),
[&](float a, float b) { return a - b * kScale; });
*saturation = false;
if (s) {
for (size_t k = 0; k < s->size(); ++k) {
(*s)[k] = kScale * tmp[k + kFftLengthBy2];
}
auto result = std::minmax_element(s->begin(), s->end());
*saturation = *result.first <= -32768 || *result.first >= 32767;
}
if (!(*saturation)) {
auto result = std::minmax_element(e->begin(), e->end());
*saturation = *result.first <= -32768 || *result.first >= 32767;
}
if (!adaptation_during_saturation) {
std::for_each(e->begin(), e->end(),
[](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); });
} else {
*saturation = false;
}
}
} // namespace
Subtractor::Subtractor(const EchoCanceller3Config& config,
ApmDataDumper* data_dumper,
Aec3Optimization optimization)
: fft_(),
data_dumper_(data_dumper),
optimization_(optimization),
config_(config),
adaptation_during_saturation_(EnableAdaptationDuringSaturation()),
enable_misadjustment_estimator_(EnableMisadjustmentEstimator()),
main_filter_(config_.filter.main.length_blocks,
config_.filter.main_initial.length_blocks,
config.filter.config_change_duration_blocks,
optimization,
data_dumper_),
shadow_filter_(config_.filter.shadow.length_blocks,
config_.filter.shadow_initial.length_blocks,
config.filter.config_change_duration_blocks,
optimization,
data_dumper_),
G_main_(config_.filter.main_initial,
config_.filter.config_change_duration_blocks),
G_shadow_(config_.filter.shadow_initial,
config.filter.config_change_duration_blocks) {
RTC_DCHECK(data_dumper_);
// Currently, the rest of AEC3 requires the main and shadow filter lengths to
// be identical.
RTC_DCHECK_EQ(config_.filter.main.length_blocks,
config_.filter.shadow.length_blocks);
RTC_DCHECK_EQ(config_.filter.main_initial.length_blocks,
config_.filter.shadow_initial.length_blocks);
}
Subtractor::~Subtractor() = default;
void Subtractor::HandleEchoPathChange(
const EchoPathVariability& echo_path_variability) {
const auto full_reset = [&]() {
main_filter_.HandleEchoPathChange();
shadow_filter_.HandleEchoPathChange();
G_main_.HandleEchoPathChange(echo_path_variability);
G_shadow_.HandleEchoPathChange();
G_main_.SetConfig(config_.filter.main_initial, true);
G_shadow_.SetConfig(config_.filter.shadow_initial, true);
main_filter_.SetSizePartitions(config_.filter.main_initial.length_blocks,
true);
shadow_filter_.SetSizePartitions(
config_.filter.shadow_initial.length_blocks, true);
};
// TODO(peah): Add delay-change specific reset behavior.
if ((echo_path_variability.delay_change ==
EchoPathVariability::DelayAdjustment::kBufferFlush) ||
(echo_path_variability.delay_change ==
EchoPathVariability::DelayAdjustment::kDelayReset)) {
full_reset();
} else if (echo_path_variability.delay_change ==
EchoPathVariability::DelayAdjustment::kNewDetectedDelay) {
full_reset();
} else if (echo_path_variability.delay_change ==
EchoPathVariability::DelayAdjustment::kBufferReadjustment) {
full_reset();
}
}
void Subtractor::ExitInitialState() {
G_main_.SetConfig(config_.filter.main, false);
G_shadow_.SetConfig(config_.filter.shadow, false);
main_filter_.SetSizePartitions(config_.filter.main.length_blocks, false);
shadow_filter_.SetSizePartitions(config_.filter.shadow.length_blocks, false);
}
void Subtractor::Process(const RenderBuffer& render_buffer,
const rtc::ArrayView<const float> capture,
const RenderSignalAnalyzer& render_signal_analyzer,
const AecState& aec_state,
SubtractorOutput* output) {
RTC_DCHECK_EQ(kBlockSize, capture.size());
rtc::ArrayView<const float> y = capture;
FftData& E_main = output->E_main;
FftData E_shadow;
std::array<float, kBlockSize>& e_main = output->e_main;
std::array<float, kBlockSize>& e_shadow = output->e_shadow;
FftData S;
FftData& G = S;
// Form the output of the main filter.
main_filter_.Filter(render_buffer, &S);
bool main_saturation = false;
PredictionError(fft_, S, y, &e_main, &output->s_main,
adaptation_during_saturation_, &main_saturation);
fft_.ZeroPaddedFft(e_main, Aec3Fft::Window::kHanning, &E_main);
// Form the output of the shadow filter.
shadow_filter_.Filter(render_buffer, &S);
bool shadow_saturation = false;
PredictionError(fft_, S, y, &e_shadow, nullptr, adaptation_during_saturation_,
&shadow_saturation);
fft_.ZeroPaddedFft(e_shadow, Aec3Fft::Window::kHanning, &E_shadow);
if (enable_misadjustment_estimator_) {
filter_misadjustment_estimator_.Update(e_main, y);
if (filter_misadjustment_estimator_.IsAdjustmentNeeded()) {
float scale = filter_misadjustment_estimator_.GetMisadjustment();
main_filter_.ScaleFilter(scale);
output->ScaleOutputMainFilter(scale);
filter_misadjustment_estimator_.Reset();
}
}
// Compute spectra for future use.
E_shadow.Spectrum(optimization_, output->E2_shadow);
E_main.Spectrum(optimization_, output->E2_main);
// Update the main filter.
std::array<float, kFftLengthBy2Plus1> X2;
render_buffer.SpectralSum(main_filter_.SizePartitions(), &X2);
G_main_.Compute(X2, render_signal_analyzer, *output, main_filter_,
aec_state.SaturatedCapture() || main_saturation, &G);
main_filter_.Adapt(render_buffer, G);
data_dumper_->DumpRaw("aec3_subtractor_G_main", G.re);
data_dumper_->DumpRaw("aec3_subtractor_G_main", G.im);
// Update the shadow filter.
if (shadow_filter_.SizePartitions() != main_filter_.SizePartitions()) {
render_buffer.SpectralSum(shadow_filter_.SizePartitions(), &X2);
}
G_shadow_.Compute(X2, render_signal_analyzer, E_shadow,
shadow_filter_.SizePartitions(),
aec_state.SaturatedCapture() || shadow_saturation, &G);
shadow_filter_.Adapt(render_buffer, G);
data_dumper_->DumpRaw("aec3_subtractor_G_shadow", G.re);
data_dumper_->DumpRaw("aec3_subtractor_G_shadow", G.im);
filter_misadjustment_estimator_.Dump(data_dumper_);
DumpFilters();
if (adaptation_during_saturation_) {
std::for_each(e_main.begin(), e_main.end(),
[](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); });
}
}
void Subtractor::FilterMisadjustmentEstimator::Update(
rtc::ArrayView<const float> e,
rtc::ArrayView<const float> y) {
const auto sum_of_squares = [](float a, float b) { return a + b * b; };
const float y2 = std::accumulate(y.begin(), y.end(), 0.f, sum_of_squares);
const float e2 = std::accumulate(e.begin(), e.end(), 0.f, sum_of_squares);
e2_acum_ += e2;
y2_acum_ += y2;
if (++n_blocks_acum_ == n_blocks_) {
if (y2_acum_ > n_blocks_ * 200.f * 200.f * kBlockSize) {
float update = (e2_acum_ / y2_acum_);
if (e2_acum_ > n_blocks_ * 7500.f * 7500.f * kBlockSize) {
overhang_ = 4; // Duration equal to blockSizeMs * n_blocks_ * 4
} else {
overhang_ = std::max(overhang_ - 1, 0);
}
if ((update < inv_misadjustment_) || (overhang_ > 0)) {
inv_misadjustment_ += 0.1f * (update - inv_misadjustment_);
}
}
e2_acum_ = 0.f;
y2_acum_ = 0.f;
n_blocks_acum_ = 0;
}
}
void Subtractor::FilterMisadjustmentEstimator::Reset() {
e2_acum_ = 0.f;
y2_acum_ = 0.f;
n_blocks_acum_ = 0;
inv_misadjustment_ = 0.f;
overhang_ = 0.f;
}
void Subtractor::FilterMisadjustmentEstimator::Dump(
ApmDataDumper* data_dumper) const {
data_dumper->DumpRaw("aec3_inv_misadjustment_factor", inv_misadjustment_);
}
} // namespace webrtc