webrtc_m130/audio/utility/channel_mixing_matrix.cc
henrika 2250b05778 Adding support for channel mixing between different channel layouts.
Two new classes are added to WebRTC from Chrome: ChannelMixer and
ChannelMixingMatrix but they are not yet utilized in the audio path for
WebRTC.

The idea is to utilize these new classes when adding support for multi-
channel encoding/decoding in WebRTC/Chrome.

Adds support for a new enumerator call webrtc::ChannelLayout and some
helper methods which maps between channel layout and number of channels.
These parts are also copied from Chrome.

Minor (cosmetic) changes are also done on the AudioFrame to prepare
for upcoming work.

Bug: webrtc:10783
Change-Id: I6cd7a13a3bc1c8bbfa19bc974c7a011d22d19197
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/141674
Commit-Queue: Henrik Andreassson <henrika@webrtc.org>
Reviewed-by: Henrik Lundin <henrik.lundin@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#28482}
2019-07-04 10:10:54 +00:00

307 lines
12 KiB
C++

/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "audio/utility/channel_mixing_matrix.h"
#include <stddef.h>
#include <algorithm>
#include "audio/utility/channel_mixer.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
namespace webrtc {
static void ValidateLayout(ChannelLayout layout) {
RTC_CHECK_NE(layout, CHANNEL_LAYOUT_NONE);
RTC_CHECK_LE(layout, CHANNEL_LAYOUT_MAX);
RTC_CHECK_NE(layout, CHANNEL_LAYOUT_UNSUPPORTED);
RTC_CHECK_NE(layout, CHANNEL_LAYOUT_DISCRETE);
RTC_CHECK_NE(layout, CHANNEL_LAYOUT_STEREO_AND_KEYBOARD_MIC);
// Verify there's at least one channel. Should always be true here by virtue
// of not being one of the invalid layouts, but lets double check to be sure.
int channel_count = ChannelLayoutToChannelCount(layout);
RTC_DCHECK_GT(channel_count, 0);
// If we have more than one channel, verify a symmetric layout for sanity.
// The unit test will verify all possible layouts, so this can be a DCHECK.
// Symmetry allows simplifying the matrix building code by allowing us to
// assume that if one channel of a pair exists, the other will too.
if (channel_count > 1) {
// Assert that LEFT exists if and only if RIGHT exists, and so on.
RTC_DCHECK_EQ(ChannelOrder(layout, LEFT) >= 0,
ChannelOrder(layout, RIGHT) >= 0);
RTC_DCHECK_EQ(ChannelOrder(layout, SIDE_LEFT) >= 0,
ChannelOrder(layout, SIDE_RIGHT) >= 0);
RTC_DCHECK_EQ(ChannelOrder(layout, BACK_LEFT) >= 0,
ChannelOrder(layout, BACK_RIGHT) >= 0);
RTC_DCHECK_EQ(ChannelOrder(layout, LEFT_OF_CENTER) >= 0,
ChannelOrder(layout, RIGHT_OF_CENTER) >= 0);
} else {
RTC_DCHECK_EQ(layout, CHANNEL_LAYOUT_MONO);
}
}
ChannelMixingMatrix::ChannelMixingMatrix(ChannelLayout input_layout,
int input_channels,
ChannelLayout output_layout,
int output_channels)
: input_layout_(input_layout),
input_channels_(input_channels),
output_layout_(output_layout),
output_channels_(output_channels) {
// Stereo down mix should never be the output layout.
RTC_CHECK_NE(output_layout, CHANNEL_LAYOUT_STEREO_DOWNMIX);
// Verify that the layouts are supported
if (input_layout != CHANNEL_LAYOUT_DISCRETE)
ValidateLayout(input_layout);
if (output_layout != CHANNEL_LAYOUT_DISCRETE)
ValidateLayout(output_layout);
// Special case for 5.0, 5.1 with back channels when upmixed to 7.0, 7.1,
// which should map the back LR to side LR.
if (input_layout_ == CHANNEL_LAYOUT_5_0_BACK &&
output_layout_ == CHANNEL_LAYOUT_7_0) {
input_layout_ = CHANNEL_LAYOUT_5_0;
} else if (input_layout_ == CHANNEL_LAYOUT_5_1_BACK &&
output_layout_ == CHANNEL_LAYOUT_7_1) {
input_layout_ = CHANNEL_LAYOUT_5_1;
}
}
ChannelMixingMatrix::~ChannelMixingMatrix() = default;
bool ChannelMixingMatrix::CreateTransformationMatrix(
std::vector<std::vector<float>>* matrix) {
matrix_ = matrix;
// Size out the initial matrix.
matrix_->reserve(output_channels_);
for (int output_ch = 0; output_ch < output_channels_; ++output_ch)
matrix_->push_back(std::vector<float>(input_channels_, 0));
// First check for discrete case.
if (input_layout_ == CHANNEL_LAYOUT_DISCRETE ||
output_layout_ == CHANNEL_LAYOUT_DISCRETE) {
// If the number of input channels is more than output channels, then
// copy as many as we can then drop the remaining input channels.
// If the number of input channels is less than output channels, then
// copy them all, then zero out the remaining output channels.
int passthrough_channels = std::min(input_channels_, output_channels_);
for (int i = 0; i < passthrough_channels; ++i)
(*matrix_)[i][i] = 1;
return true;
}
// Route matching channels and figure out which ones aren't accounted for.
for (Channels ch = LEFT; ch < CHANNELS_MAX + 1;
ch = static_cast<Channels>(ch + 1)) {
int input_ch_index = ChannelOrder(input_layout_, ch);
if (input_ch_index < 0)
continue;
int output_ch_index = ChannelOrder(output_layout_, ch);
if (output_ch_index < 0) {
unaccounted_inputs_.push_back(ch);
continue;
}
RTC_DCHECK_LT(static_cast<size_t>(output_ch_index), matrix_->size());
RTC_DCHECK_LT(static_cast<size_t>(input_ch_index),
(*matrix_)[output_ch_index].size());
(*matrix_)[output_ch_index][input_ch_index] = 1;
}
// If all input channels are accounted for, there's nothing left to do.
if (unaccounted_inputs_.empty()) {
// Since all output channels map directly to inputs we can optimize.
return true;
}
// Mix front LR into center.
if (IsUnaccounted(LEFT)) {
// When down mixing to mono from stereo, we need to be careful of full scale
// stereo mixes. Scaling by 1 / sqrt(2) here will likely lead to clipping
// so we use 1 / 2 instead.
float scale =
(output_layout_ == CHANNEL_LAYOUT_MONO && input_channels_ == 2)
? 0.5
: ChannelMixer::kHalfPower;
Mix(LEFT, CENTER, scale);
Mix(RIGHT, CENTER, scale);
}
// Mix center into front LR.
if (IsUnaccounted(CENTER)) {
// When up mixing from mono, just do a copy to front LR.
float scale =
(input_layout_ == CHANNEL_LAYOUT_MONO) ? 1 : ChannelMixer::kHalfPower;
MixWithoutAccounting(CENTER, LEFT, scale);
Mix(CENTER, RIGHT, scale);
}
// Mix back LR into: side LR || back center || front LR || front center.
if (IsUnaccounted(BACK_LEFT)) {
if (HasOutputChannel(SIDE_LEFT)) {
// If the input has side LR, mix back LR into side LR, but instead if the
// input doesn't have side LR (but output does) copy back LR to side LR.
float scale = HasInputChannel(SIDE_LEFT) ? ChannelMixer::kHalfPower : 1;
Mix(BACK_LEFT, SIDE_LEFT, scale);
Mix(BACK_RIGHT, SIDE_RIGHT, scale);
} else if (HasOutputChannel(BACK_CENTER)) {
// Mix back LR into back center.
Mix(BACK_LEFT, BACK_CENTER, ChannelMixer::kHalfPower);
Mix(BACK_RIGHT, BACK_CENTER, ChannelMixer::kHalfPower);
} else if (output_layout_ > CHANNEL_LAYOUT_MONO) {
// Mix back LR into front LR.
Mix(BACK_LEFT, LEFT, ChannelMixer::kHalfPower);
Mix(BACK_RIGHT, RIGHT, ChannelMixer::kHalfPower);
} else {
// Mix back LR into front center.
Mix(BACK_LEFT, CENTER, ChannelMixer::kHalfPower);
Mix(BACK_RIGHT, CENTER, ChannelMixer::kHalfPower);
}
}
// Mix side LR into: back LR || back center || front LR || front center.
if (IsUnaccounted(SIDE_LEFT)) {
if (HasOutputChannel(BACK_LEFT)) {
// If the input has back LR, mix side LR into back LR, but instead if the
// input doesn't have back LR (but output does) copy side LR to back LR.
float scale = HasInputChannel(BACK_LEFT) ? ChannelMixer::kHalfPower : 1;
Mix(SIDE_LEFT, BACK_LEFT, scale);
Mix(SIDE_RIGHT, BACK_RIGHT, scale);
} else if (HasOutputChannel(BACK_CENTER)) {
// Mix side LR into back center.
Mix(SIDE_LEFT, BACK_CENTER, ChannelMixer::kHalfPower);
Mix(SIDE_RIGHT, BACK_CENTER, ChannelMixer::kHalfPower);
} else if (output_layout_ > CHANNEL_LAYOUT_MONO) {
// Mix side LR into front LR.
Mix(SIDE_LEFT, LEFT, ChannelMixer::kHalfPower);
Mix(SIDE_RIGHT, RIGHT, ChannelMixer::kHalfPower);
} else {
// Mix side LR into front center.
Mix(SIDE_LEFT, CENTER, ChannelMixer::kHalfPower);
Mix(SIDE_RIGHT, CENTER, ChannelMixer::kHalfPower);
}
}
// Mix back center into: back LR || side LR || front LR || front center.
if (IsUnaccounted(BACK_CENTER)) {
if (HasOutputChannel(BACK_LEFT)) {
// Mix back center into back LR.
MixWithoutAccounting(BACK_CENTER, BACK_LEFT, ChannelMixer::kHalfPower);
Mix(BACK_CENTER, BACK_RIGHT, ChannelMixer::kHalfPower);
} else if (HasOutputChannel(SIDE_LEFT)) {
// Mix back center into side LR.
MixWithoutAccounting(BACK_CENTER, SIDE_LEFT, ChannelMixer::kHalfPower);
Mix(BACK_CENTER, SIDE_RIGHT, ChannelMixer::kHalfPower);
} else if (output_layout_ > CHANNEL_LAYOUT_MONO) {
// Mix back center into front LR.
// TODO(dalecurtis): Not sure about these values?
MixWithoutAccounting(BACK_CENTER, LEFT, ChannelMixer::kHalfPower);
Mix(BACK_CENTER, RIGHT, ChannelMixer::kHalfPower);
} else {
// Mix back center into front center.
// TODO(dalecurtis): Not sure about these values?
Mix(BACK_CENTER, CENTER, ChannelMixer::kHalfPower);
}
}
// Mix LR of center into: front LR || front center.
if (IsUnaccounted(LEFT_OF_CENTER)) {
if (HasOutputChannel(LEFT)) {
// Mix LR of center into front LR.
Mix(LEFT_OF_CENTER, LEFT, ChannelMixer::kHalfPower);
Mix(RIGHT_OF_CENTER, RIGHT, ChannelMixer::kHalfPower);
} else {
// Mix LR of center into front center.
Mix(LEFT_OF_CENTER, CENTER, ChannelMixer::kHalfPower);
Mix(RIGHT_OF_CENTER, CENTER, ChannelMixer::kHalfPower);
}
}
// Mix LFE into: front center || front LR.
if (IsUnaccounted(LFE)) {
if (!HasOutputChannel(CENTER)) {
// Mix LFE into front LR.
MixWithoutAccounting(LFE, LEFT, ChannelMixer::kHalfPower);
Mix(LFE, RIGHT, ChannelMixer::kHalfPower);
} else {
// Mix LFE into front center.
Mix(LFE, CENTER, ChannelMixer::kHalfPower);
}
}
// All channels should now be accounted for.
RTC_DCHECK(unaccounted_inputs_.empty());
// See if the output |matrix_| is simply a remapping matrix. If each input
// channel maps to a single output channel we can simply remap. Doing this
// programmatically is less fragile than logic checks on channel mappings.
for (int output_ch = 0; output_ch < output_channels_; ++output_ch) {
int input_mappings = 0;
for (int input_ch = 0; input_ch < input_channels_; ++input_ch) {
// We can only remap if each row contains a single scale of 1. I.e., each
// output channel is mapped from a single unscaled input channel.
if ((*matrix_)[output_ch][input_ch] != 1 || ++input_mappings > 1)
return false;
}
}
// If we've gotten here, |matrix_| is simply a remapping.
return true;
}
void ChannelMixingMatrix::AccountFor(Channels ch) {
unaccounted_inputs_.erase(
std::find(unaccounted_inputs_.begin(), unaccounted_inputs_.end(), ch));
}
bool ChannelMixingMatrix::IsUnaccounted(Channels ch) const {
return std::find(unaccounted_inputs_.begin(), unaccounted_inputs_.end(),
ch) != unaccounted_inputs_.end();
}
bool ChannelMixingMatrix::HasInputChannel(Channels ch) const {
return ChannelOrder(input_layout_, ch) >= 0;
}
bool ChannelMixingMatrix::HasOutputChannel(Channels ch) const {
return ChannelOrder(output_layout_, ch) >= 0;
}
void ChannelMixingMatrix::Mix(Channels input_ch,
Channels output_ch,
float scale) {
MixWithoutAccounting(input_ch, output_ch, scale);
AccountFor(input_ch);
}
void ChannelMixingMatrix::MixWithoutAccounting(Channels input_ch,
Channels output_ch,
float scale) {
int input_ch_index = ChannelOrder(input_layout_, input_ch);
int output_ch_index = ChannelOrder(output_layout_, output_ch);
RTC_DCHECK(IsUnaccounted(input_ch));
RTC_DCHECK_GE(input_ch_index, 0);
RTC_DCHECK_GE(output_ch_index, 0);
RTC_DCHECK_EQ((*matrix_)[output_ch_index][input_ch_index], 0);
(*matrix_)[output_ch_index][input_ch_index] = scale;
}
} // namespace webrtc