Jesús de Vicente Peña 075cb2b2f7 AEC3: Changes to how the reverberation decay is applied.
In this work we introduce some changes on how the reverberation model for AEC3 is applied. Currently, the exponential modelling of the tails is applied over the linear echo estimates. That might result  in an overestimation of the reverberation tails under certain conditions. In this work, the reverberation model is instead applied over an estimate of the energies at the tails of the linear estimate.

Additionally, the stationary estimator is changed so it does not disable the aec immediately after a burst of activity.

Bug: webrtc:9384,webrtc:9400,chromium:852257
Change-Id: Ia486694ed326cfe231fc688877c0b9b6e2c450ff
Reviewed-on: https://webrtc-review.googlesource.com/82161
Reviewed-by: Per Åhgren <peah@webrtc.org>
Commit-Queue: Jesus de Vicente Pena <devicentepena@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#23599}
2018-06-13 14:54:04 +00:00

573 lines
22 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/suppression_gain.h"
#include "typedefs.h" // NOLINT(build/include)
#if defined(WEBRTC_ARCH_X86_FAMILY)
#include <emmintrin.h>
#endif
#include <math.h>
#include <algorithm>
#include <functional>
#include <numeric>
#include "modules/audio_processing/aec3/vector_math.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/atomicops.h"
#include "rtc_base/checks.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
bool EnableTransparencyImprovements() {
return !field_trial::IsEnabled(
"WebRTC-Aec3TransparencyImprovementsKillSwitch");
}
// Adjust the gains according to the presence of known external filters.
void AdjustForExternalFilters(std::array<float, kFftLengthBy2Plus1>* gain) {
// Limit the low frequency gains to avoid the impact of the high-pass filter
// on the lower-frequency gain influencing the overall achieved gain.
(*gain)[0] = (*gain)[1] = std::min((*gain)[1], (*gain)[2]);
// Limit the high frequency gains to avoid the impact of the anti-aliasing
// filter on the upper-frequency gains influencing the overall achieved
// gain. TODO(peah): Update this when new anti-aliasing filters are
// implemented.
constexpr size_t kAntiAliasingImpactLimit = (64 * 2000) / 8000;
const float min_upper_gain = (*gain)[kAntiAliasingImpactLimit];
std::for_each(
gain->begin() + kAntiAliasingImpactLimit, gain->end() - 1,
[min_upper_gain](float& a) { a = std::min(a, min_upper_gain); });
(*gain)[kFftLengthBy2] = (*gain)[kFftLengthBy2Minus1];
}
// Computes the gain to apply for the bands beyond the first band.
float UpperBandsGain(
const rtc::Optional<int>& narrow_peak_band,
bool saturated_echo,
const std::vector<std::vector<float>>& render,
const std::array<float, kFftLengthBy2Plus1>& low_band_gain) {
RTC_DCHECK_LT(0, render.size());
if (render.size() == 1) {
return 1.f;
}
if (narrow_peak_band &&
(*narrow_peak_band > static_cast<int>(kFftLengthBy2Plus1 - 10))) {
return 0.001f;
}
constexpr size_t kLowBandGainLimit = kFftLengthBy2 / 2;
const float gain_below_8_khz = *std::min_element(
low_band_gain.begin() + kLowBandGainLimit, low_band_gain.end());
// Always attenuate the upper bands when there is saturated echo.
if (saturated_echo) {
return std::min(0.001f, gain_below_8_khz);
}
// Compute the upper and lower band energies.
const auto sum_of_squares = [](float a, float b) { return a + b * b; };
const float low_band_energy =
std::accumulate(render[0].begin(), render[0].end(), 0.f, sum_of_squares);
float high_band_energy = 0.f;
for (size_t k = 1; k < render.size(); ++k) {
const float energy = std::accumulate(render[k].begin(), render[k].end(),
0.f, sum_of_squares);
high_band_energy = std::max(high_band_energy, energy);
}
// If there is more power in the lower frequencies than the upper frequencies,
// or if the power in upper frequencies is low, do not bound the gain in the
// upper bands.
float anti_howling_gain;
constexpr float kThreshold = kBlockSize * 10.f * 10.f / 4.f;
if (high_band_energy < std::max(low_band_energy, kThreshold)) {
anti_howling_gain = 1.f;
} else {
// In all other cases, bound the gain for upper frequencies.
RTC_DCHECK_LE(low_band_energy, high_band_energy);
RTC_DCHECK_NE(0.f, high_band_energy);
anti_howling_gain = 0.01f * sqrtf(low_band_energy / high_band_energy);
}
// Choose the gain as the minimum of the lower and upper gains.
return std::min(gain_below_8_khz, anti_howling_gain);
}
// Scales the echo according to assessed audibility at the other end.
void WeightEchoForAudibility(const EchoCanceller3Config& config,
rtc::ArrayView<const float> echo,
rtc::ArrayView<float> weighted_echo,
rtc::ArrayView<float> one_by_weighted_echo) {
RTC_DCHECK_EQ(kFftLengthBy2Plus1, echo.size());
RTC_DCHECK_EQ(kFftLengthBy2Plus1, weighted_echo.size());
RTC_DCHECK_EQ(kFftLengthBy2Plus1, one_by_weighted_echo.size());
auto weigh = [](float threshold, float normalizer, size_t begin, size_t end,
rtc::ArrayView<const float> echo,
rtc::ArrayView<float> weighted_echo,
rtc::ArrayView<float> one_by_weighted_echo) {
for (size_t k = begin; k < end; ++k) {
if (echo[k] < threshold) {
float tmp = (threshold - echo[k]) * normalizer;
weighted_echo[k] = echo[k] * std::max(0.f, 1.f - tmp * tmp);
} else {
weighted_echo[k] = echo[k];
}
one_by_weighted_echo[k] =
weighted_echo[k] > 0.f ? 1.f / weighted_echo[k] : 1.f;
}
};
float threshold = config.echo_audibility.floor_power *
config.echo_audibility.audibility_threshold_lf;
float normalizer = 1.f / (threshold - config.echo_audibility.floor_power);
weigh(threshold, normalizer, 0, 3, echo, weighted_echo, one_by_weighted_echo);
threshold = config.echo_audibility.floor_power *
config.echo_audibility.audibility_threshold_mf;
normalizer = 1.f / (threshold - config.echo_audibility.floor_power);
weigh(threshold, normalizer, 3, 7, echo, weighted_echo, one_by_weighted_echo);
threshold = config.echo_audibility.floor_power *
config.echo_audibility.audibility_threshold_hf;
normalizer = 1.f / (threshold - config.echo_audibility.floor_power);
weigh(threshold, normalizer, 7, kFftLengthBy2Plus1, echo, weighted_echo,
one_by_weighted_echo);
}
// Computes the gain to reduce the echo to a non audible level.
void GainToNoAudibleEcho(
const EchoCanceller3Config& config,
bool low_noise_render,
bool saturated_echo,
bool linear_echo_estimate,
bool enable_transparency_improvements,
const std::array<float, kFftLengthBy2Plus1>& nearend,
const std::array<float, kFftLengthBy2Plus1>& weighted_echo,
const std::array<float, kFftLengthBy2Plus1>& masker,
const std::array<float, kFftLengthBy2Plus1>& min_gain,
const std::array<float, kFftLengthBy2Plus1>& max_gain,
const std::array<float, kFftLengthBy2Plus1>& one_by_weighted_echo,
std::array<float, kFftLengthBy2Plus1>* gain) {
float nearend_masking_margin = 0.f;
if (linear_echo_estimate) {
nearend_masking_margin =
low_noise_render
? config.gain_mask.m9
: (saturated_echo ? config.gain_mask.m2 : config.gain_mask.m3);
} else {
nearend_masking_margin = config.gain_mask.m7;
}
RTC_DCHECK_LE(0.f, nearend_masking_margin);
RTC_DCHECK_GT(1.f, nearend_masking_margin);
const float masker_margin =
linear_echo_estimate
? (enable_transparency_improvements ? config.gain_mask.m0
: config.gain_mask.m1)
: config.gain_mask.m8;
for (size_t k = 0; k < gain->size(); ++k) {
// TODO(devicentepena): Experiment by removing the reverberation estimation
// from the nearend signal before computing the gains.
const float unity_gain_masker = std::max(nearend[k], masker[k]);
RTC_DCHECK_LE(0.f, nearend_masking_margin * unity_gain_masker);
if (weighted_echo[k] <= nearend_masking_margin * unity_gain_masker ||
unity_gain_masker <= 0.f) {
(*gain)[k] = 1.f;
} else {
RTC_DCHECK_LT(0.f, unity_gain_masker);
(*gain)[k] =
std::max(0.f, (1.f - config.gain_mask.gain_curve_slope *
weighted_echo[k] / unity_gain_masker) *
config.gain_mask.gain_curve_offset);
(*gain)[k] = std::max(masker_margin * masker[k] * one_by_weighted_echo[k],
(*gain)[k]);
}
(*gain)[k] = std::min(std::max((*gain)[k], min_gain[k]), max_gain[k]);
}
}
// TODO(peah): Make adaptive to take the actual filter error into account.
constexpr size_t kUpperAccurateBandPlus1 = 29;
// Computes the signal output power that masks the echo signal.
void MaskingPower(const EchoCanceller3Config& config,
bool enable_transparency_improvements,
const std::array<float, kFftLengthBy2Plus1>& nearend,
const std::array<float, kFftLengthBy2Plus1>& comfort_noise,
const std::array<float, kFftLengthBy2Plus1>& last_masker,
const std::array<float, kFftLengthBy2Plus1>& gain,
std::array<float, kFftLengthBy2Plus1>* masker) {
if (enable_transparency_improvements) {
std::copy(comfort_noise.begin(), comfort_noise.end(), masker->begin());
return;
}
// Apply masking over time.
float masking_factor = config.gain_mask.temporal_masking_lf;
auto limit = config.gain_mask.temporal_masking_lf_bands;
std::transform(
comfort_noise.begin(), comfort_noise.begin() + limit, last_masker.begin(),
masker->begin(),
[masking_factor](float a, float b) { return a + masking_factor * b; });
masking_factor = config.gain_mask.temporal_masking_hf;
std::transform(
comfort_noise.begin() + limit, comfort_noise.end(),
last_masker.begin() + limit, masker->begin() + limit,
[masking_factor](float a, float b) { return a + masking_factor * b; });
// Apply masking only between lower frequency bands.
std::array<float, kFftLengthBy2Plus1> side_band_masker;
float max_nearend_after_gain = 0.f;
for (size_t k = 0; k < gain.size(); ++k) {
const float nearend_after_gain = nearend[k] * gain[k];
max_nearend_after_gain =
std::max(max_nearend_after_gain, nearend_after_gain);
side_band_masker[k] = nearend_after_gain + comfort_noise[k];
}
RTC_DCHECK_LT(kUpperAccurateBandPlus1, gain.size());
for (size_t k = 1; k < kUpperAccurateBandPlus1; ++k) {
(*masker)[k] += config.gain_mask.m5 *
(side_band_masker[k - 1] + side_band_masker[k + 1]);
}
// Add full-band masking as a minimum value for the masker.
const float min_masker = max_nearend_after_gain * config.gain_mask.m6;
std::for_each(masker->begin(), masker->end(),
[min_masker](float& a) { a = std::max(a, min_masker); });
}
// Limits the gain in the frequencies for which the adaptive filter has not
// converged. Currently, these frequencies are not hardcoded to the frequencies
// which are typically not excited by speech.
// TODO(peah): Make adaptive to take the actual filter error into account.
void AdjustNonConvergedFrequencies(
std::array<float, kFftLengthBy2Plus1>* gain) {
constexpr float oneByBandsInSum =
1 / static_cast<float>(kUpperAccurateBandPlus1 - 20);
const float hf_gain_bound =
std::accumulate(gain->begin() + 20,
gain->begin() + kUpperAccurateBandPlus1, 0.f) *
oneByBandsInSum;
std::for_each(gain->begin() + kUpperAccurateBandPlus1, gain->end(),
[hf_gain_bound](float& a) { a = std::min(a, hf_gain_bound); });
}
} // namespace
int SuppressionGain::instance_count_ = 0;
// TODO(peah): Add further optimizations, in particular for the divisions.
void SuppressionGain::LowerBandGain(
bool low_noise_render,
const AecState& aec_state,
const std::array<float, kFftLengthBy2Plus1>& nearend,
const std::array<float, kFftLengthBy2Plus1>& echo,
const std::array<float, kFftLengthBy2Plus1>& comfort_noise,
std::array<float, kFftLengthBy2Plus1>* gain) {
const bool saturated_echo = aec_state.SaturatedEcho();
const bool linear_echo_estimate = aec_state.UsableLinearEstimate();
// Weight echo power in terms of audibility. // Precompute 1/weighted echo
// (note that when the echo is zero, the precomputed value is never used).
std::array<float, kFftLengthBy2Plus1> weighted_echo;
std::array<float, kFftLengthBy2Plus1> one_by_weighted_echo;
WeightEchoForAudibility(config_, echo, weighted_echo, one_by_weighted_echo);
// Compute the minimum gain as the attenuating gain to put the signal just
// above the zero sample values.
std::array<float, kFftLengthBy2Plus1> min_gain;
const float min_echo_power =
low_noise_render ? config_.echo_audibility.low_render_limit
: config_.echo_audibility.normal_render_limit;
if (!saturated_echo) {
for (size_t k = 0; k < nearend.size(); ++k) {
const float denom = std::min(nearend[k], weighted_echo[k]);
min_gain[k] = denom > 0.f ? min_echo_power / denom : 1.f;
min_gain[k] = std::min(min_gain[k], 1.f);
}
if (enable_transparency_improvements_) {
for (size_t k = 0; k < 6; ++k) {
// Make sure the gains of the low frequencies do not decrease too
// quickly after strong nearend.
if (last_nearend_[k] > last_echo_[k]) {
min_gain[k] =
std::max(min_gain[k],
last_gain_[k] * config_.gain_updates.max_dec_factor_lf);
min_gain[k] = std::min(min_gain[k], 1.f);
}
}
}
} else {
min_gain.fill(0.f);
}
// Compute the maximum gain by limiting the gain increase from the previous
// gain.
std::array<float, kFftLengthBy2Plus1> max_gain;
if (enable_transparency_improvements_) {
for (size_t k = 0; k < gain->size(); ++k) {
max_gain[k] =
std::min(std::max(last_gain_[k] * config_.gain_updates.max_inc_factor,
config_.gain_updates.floor_first_increase),
1.f);
}
} else {
for (size_t k = 0; k < gain->size(); ++k) {
max_gain[k] =
std::min(std::max(last_gain_[k] * gain_increase_[k],
config_.gain_updates.floor_first_increase),
1.f);
}
}
// Iteratively compute the gain required to attenuate the echo to a non
// noticeable level.
gain->fill(0.f);
std::array<float, kFftLengthBy2Plus1> masker;
for (int k = 0; k < 2; ++k) {
MaskingPower(config_, enable_transparency_improvements_, nearend,
comfort_noise, last_masker_, *gain, &masker);
GainToNoAudibleEcho(config_, low_noise_render, saturated_echo,
linear_echo_estimate, enable_transparency_improvements_,
nearend, weighted_echo, masker, min_gain, max_gain,
one_by_weighted_echo, gain);
AdjustForExternalFilters(gain);
}
// Adjust the gain for frequencies which have not yet converged.
AdjustNonConvergedFrequencies(gain);
// Update the allowed maximum gain increase.
UpdateGainIncrease(low_noise_render, linear_echo_estimate, saturated_echo,
weighted_echo, *gain);
// Store data required for the gain computation of the next block.
std::copy(nearend.begin(), nearend.end(), last_nearend_.begin());
std::copy(weighted_echo.begin(), weighted_echo.end(), last_echo_.begin());
std::copy(gain->begin(), gain->end(), last_gain_.begin());
MaskingPower(config_, enable_transparency_improvements_, nearend,
comfort_noise, last_masker_, *gain, &last_masker_);
aec3::VectorMath(optimization_).Sqrt(*gain);
// Debug outputs for the purpose of development and analysis.
data_dumper_->DumpRaw("aec3_suppressor_min_gain", min_gain);
data_dumper_->DumpRaw("aec3_suppressor_max_gain", max_gain);
data_dumper_->DumpRaw("aec3_suppressor_masker", masker);
data_dumper_->DumpRaw("aec3_suppressor_last_masker", last_masker_);
}
SuppressionGain::SuppressionGain(const EchoCanceller3Config& config,
Aec3Optimization optimization,
int sample_rate_hz)
: data_dumper_(
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
optimization_(optimization),
config_(config),
state_change_duration_blocks_(
static_cast<int>(config_.filter.config_change_duration_blocks)),
coherence_gain_(sample_rate_hz,
config_.suppressor.bands_with_reliable_coherence),
enable_transparency_improvements_(EnableTransparencyImprovements()) {
RTC_DCHECK_LT(0, state_change_duration_blocks_);
one_by_state_change_duration_blocks_ = 1.f / state_change_duration_blocks_;
last_gain_.fill(1.f);
last_masker_.fill(0.f);
gain_increase_.fill(1.f);
last_nearend_.fill(0.f);
last_echo_.fill(0.f);
}
SuppressionGain::~SuppressionGain() = default;
void SuppressionGain::GetGain(
const std::array<float, kFftLengthBy2Plus1>& nearend_spectrum,
const std::array<float, kFftLengthBy2Plus1>& echo_spectrum,
const std::array<float, kFftLengthBy2Plus1>& comfort_noise_spectrum,
const FftData& linear_aec_fft,
const FftData& render_fft,
const FftData& capture_fft,
const RenderSignalAnalyzer& render_signal_analyzer,
const AecState& aec_state,
const std::vector<std::vector<float>>& render,
float* high_bands_gain,
std::array<float, kFftLengthBy2Plus1>* low_band_gain) {
RTC_DCHECK(high_bands_gain);
RTC_DCHECK(low_band_gain);
// Compute gain for the lower band.
bool low_noise_render = low_render_detector_.Detect(render);
const rtc::Optional<int> narrow_peak_band =
render_signal_analyzer.NarrowPeakBand();
LowerBandGain(low_noise_render, aec_state, nearend_spectrum, echo_spectrum,
comfort_noise_spectrum, low_band_gain);
// Adjust the gain for bands where the coherence indicates not echo.
if (config_.suppressor.bands_with_reliable_coherence > 0 &&
!enable_transparency_improvements_) {
std::array<float, kFftLengthBy2Plus1> G_coherence;
coherence_gain_.ComputeGain(linear_aec_fft, render_fft, capture_fft,
G_coherence);
for (size_t k = 0; k < config_.suppressor.bands_with_reliable_coherence;
++k) {
(*low_band_gain)[k] = std::max((*low_band_gain)[k], G_coherence[k]);
}
}
// Limit the gain of the lower bands during start up and after resets.
const float gain_upper_bound = aec_state.SuppressionGainLimit();
if (gain_upper_bound < 1.f) {
for (size_t k = 0; k < low_band_gain->size(); ++k) {
(*low_band_gain)[k] = std::min((*low_band_gain)[k], gain_upper_bound);
}
}
// Compute the gain for the upper bands.
*high_bands_gain = UpperBandsGain(narrow_peak_band, aec_state.SaturatedEcho(),
render, *low_band_gain);
}
void SuppressionGain::SetInitialState(bool state) {
initial_state_ = state;
if (state) {
initial_state_change_counter_ = state_change_duration_blocks_;
} else {
initial_state_change_counter_ = 0;
}
}
void SuppressionGain::UpdateGainIncrease(
bool low_noise_render,
bool linear_echo_estimate,
bool saturated_echo,
const std::array<float, kFftLengthBy2Plus1>& echo,
const std::array<float, kFftLengthBy2Plus1>& new_gain) {
float max_inc;
float max_dec;
float rate_inc;
float rate_dec;
float min_inc;
float min_dec;
RTC_DCHECK_GE(state_change_duration_blocks_, initial_state_change_counter_);
if (initial_state_change_counter_ > 0) {
if (--initial_state_change_counter_ == 0) {
initial_state_ = false;
}
}
RTC_DCHECK_LE(0, initial_state_change_counter_);
// EchoCanceller3Config::GainUpdates
auto& p = config_.gain_updates;
if (!linear_echo_estimate) {
max_inc = p.nonlinear.max_inc;
max_dec = p.nonlinear.max_dec;
rate_inc = p.nonlinear.rate_inc;
rate_dec = p.nonlinear.rate_dec;
min_inc = p.nonlinear.min_inc;
min_dec = p.nonlinear.min_dec;
} else if (initial_state_ && !saturated_echo) {
if (initial_state_change_counter_ > 0) {
float change_factor =
initial_state_change_counter_ * one_by_state_change_duration_blocks_;
auto average = [](float from, float to, float from_weight) {
return from * from_weight + to * (1.f - from_weight);
};
max_inc = average(p.initial.max_inc, p.normal.max_inc, change_factor);
max_dec = average(p.initial.max_dec, p.normal.max_dec, change_factor);
rate_inc = average(p.initial.rate_inc, p.normal.rate_inc, change_factor);
rate_dec = average(p.initial.rate_dec, p.normal.rate_dec, change_factor);
min_inc = average(p.initial.min_inc, p.normal.min_inc, change_factor);
min_dec = average(p.initial.min_dec, p.normal.min_dec, change_factor);
} else {
max_inc = p.initial.max_inc;
max_dec = p.initial.max_dec;
rate_inc = p.initial.rate_inc;
rate_dec = p.initial.rate_dec;
min_inc = p.initial.min_inc;
min_dec = p.initial.min_dec;
}
} else if (low_noise_render) {
max_inc = p.low_noise.max_inc;
max_dec = p.low_noise.max_dec;
rate_inc = p.low_noise.rate_inc;
rate_dec = p.low_noise.rate_dec;
min_inc = p.low_noise.min_inc;
min_dec = p.low_noise.min_dec;
} else if (!saturated_echo) {
max_inc = p.normal.max_inc;
max_dec = p.normal.max_dec;
rate_inc = p.normal.rate_inc;
rate_dec = p.normal.rate_dec;
min_inc = p.normal.min_inc;
min_dec = p.normal.min_dec;
} else {
max_inc = p.saturation.max_inc;
max_dec = p.saturation.max_dec;
rate_inc = p.saturation.rate_inc;
rate_dec = p.saturation.rate_dec;
min_inc = p.saturation.min_inc;
min_dec = p.saturation.min_dec;
}
for (size_t k = 0; k < new_gain.size(); ++k) {
auto increase_update = [](float new_gain, float last_gain,
float current_inc, float max_inc, float min_inc,
float change_rate) {
return new_gain > last_gain ? std::min(max_inc, current_inc * change_rate)
: min_inc;
};
if (echo[k] > last_echo_[k]) {
gain_increase_[k] =
increase_update(new_gain[k], last_gain_[k], gain_increase_[k],
max_inc, min_inc, rate_inc);
} else {
gain_increase_[k] =
increase_update(new_gain[k], last_gain_[k], gain_increase_[k],
max_dec, min_dec, rate_dec);
}
}
}
// Detects when the render signal can be considered to have low power and
// consist of stationary noise.
bool SuppressionGain::LowNoiseRenderDetector::Detect(
const std::vector<std::vector<float>>& render) {
float x2_sum = 0.f;
float x2_max = 0.f;
for (auto x_k : render[0]) {
const float x2 = x_k * x_k;
x2_sum += x2;
x2_max = std::max(x2_max, x2);
}
constexpr float kThreshold = 50.f * 50.f * 64.f;
const bool low_noise_render =
average_power_ < kThreshold && x2_max < 3 * average_power_;
average_power_ = average_power_ * 0.9f + x2_sum * 0.1f;
return low_noise_render;
}
} // namespace webrtc