webrtc_m130/webrtc/modules/audio_coding/neteq/packet_buffer_unittest.cc
minyue-webrtc 0c3ca753c5 Replacing NetEq discard rate with secondary discarded rate.
NetEq network statistics contains discard rate but has not been used and even not been implemented until recently.

According to w3c.github.io/webrtc-stats/#dom-rtcreceivedrtpstreamstats-packetsdiscarded,
this statistics needs to be replaced with an accumulative stats. Such work will be carried out separately.

Meanwhile, we need to add a rate to reflect rate of discarded redundant packets. See webrtc:8025.

In this CL, we replace the existing discard rate with secondary discarded rate, so as to
1. fulfill the requests on webrtc:8025
2. get ready to implement an accumulative statistics for discarded packets.

BUG: webrtc:7903,webrtc:8025
Change-Id: Idbf143a105db76ca15f0af54848e1448f2a810ec
Reviewed-on: https://chromium-review.googlesource.com/582863
Reviewed-by: Henrik Lundin <henrik.lundin@webrtc.org>
Reviewed-by: Karl Wiberg <kwiberg@webrtc.org>
Commit-Queue: Minyue Li <minyue@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#19495}
2017-08-24 13:46:52 +00:00

738 lines
26 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Unit tests for PacketBuffer class.
#include "webrtc/modules/audio_coding/neteq/packet_buffer.h"
#include "webrtc/api/audio_codecs/builtin_audio_decoder_factory.h"
#include "webrtc/modules/audio_coding/neteq/mock/mock_decoder_database.h"
#include "webrtc/modules/audio_coding/neteq/mock/mock_statistics_calculator.h"
#include "webrtc/modules/audio_coding/neteq/packet.h"
#include "webrtc/modules/audio_coding/neteq/tick_timer.h"
#include "webrtc/test/gmock.h"
#include "webrtc/test/gtest.h"
using ::testing::Return;
using ::testing::StrictMock;
using ::testing::_;
using ::testing::InSequence;
using ::testing::MockFunction;
namespace webrtc {
// Helper class to generate packets. Packets must be deleted by the user.
class PacketGenerator {
public:
PacketGenerator(uint16_t seq_no, uint32_t ts, uint8_t pt, int frame_size);
virtual ~PacketGenerator() {}
void Reset(uint16_t seq_no, uint32_t ts, uint8_t pt, int frame_size);
Packet NextPacket(int payload_size_bytes);
uint16_t seq_no_;
uint32_t ts_;
uint8_t pt_;
int frame_size_;
};
PacketGenerator::PacketGenerator(uint16_t seq_no, uint32_t ts, uint8_t pt,
int frame_size) {
Reset(seq_no, ts, pt, frame_size);
}
void PacketGenerator::Reset(uint16_t seq_no, uint32_t ts, uint8_t pt,
int frame_size) {
seq_no_ = seq_no;
ts_ = ts;
pt_ = pt;
frame_size_ = frame_size;
}
Packet PacketGenerator::NextPacket(int payload_size_bytes) {
Packet packet;
packet.sequence_number = seq_no_;
packet.timestamp = ts_;
packet.payload_type = pt_;
packet.payload.SetSize(payload_size_bytes);
++seq_no_;
ts_ += frame_size_;
return packet;
}
struct PacketsToInsert {
uint16_t sequence_number;
uint32_t timestamp;
uint8_t payload_type;
bool primary;
// Order of this packet to appear upon extraction, after inserting a series
// of packets. A negative number means that it should have been discarded
// before extraction.
int extract_order;
};
// Start of test definitions.
TEST(PacketBuffer, CreateAndDestroy) {
TickTimer tick_timer;
PacketBuffer* buffer = new PacketBuffer(10, &tick_timer); // 10 packets.
EXPECT_TRUE(buffer->Empty());
delete buffer;
}
TEST(PacketBuffer, InsertPacket) {
TickTimer tick_timer;
PacketBuffer buffer(10, &tick_timer); // 10 packets.
PacketGenerator gen(17u, 4711u, 0, 10);
StrictMock<MockStatisticsCalculator> mock_stats;
const int payload_len = 100;
const Packet packet = gen.NextPacket(payload_len);
EXPECT_EQ(0, buffer.InsertPacket(packet.Clone(), &mock_stats));
uint32_t next_ts;
EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&next_ts));
EXPECT_EQ(4711u, next_ts);
EXPECT_FALSE(buffer.Empty());
EXPECT_EQ(1u, buffer.NumPacketsInBuffer());
const Packet* next_packet = buffer.PeekNextPacket();
EXPECT_EQ(packet, *next_packet); // Compare contents.
// Do not explicitly flush buffer or delete packet to test that it is deleted
// with the buffer. (Tested with Valgrind or similar tool.)
}
// Test to flush buffer.
TEST(PacketBuffer, FlushBuffer) {
TickTimer tick_timer;
PacketBuffer buffer(10, &tick_timer); // 10 packets.
PacketGenerator gen(0, 0, 0, 10);
const int payload_len = 10;
StrictMock<MockStatisticsCalculator> mock_stats;
// Insert 10 small packets; should be ok.
for (int i = 0; i < 10; ++i) {
EXPECT_EQ(PacketBuffer::kOK,
buffer.InsertPacket(gen.NextPacket(payload_len), &mock_stats));
}
EXPECT_EQ(10u, buffer.NumPacketsInBuffer());
EXPECT_FALSE(buffer.Empty());
buffer.Flush();
// Buffer should delete the payloads itself.
EXPECT_EQ(0u, buffer.NumPacketsInBuffer());
EXPECT_TRUE(buffer.Empty());
}
// Test to fill the buffer over the limits, and verify that it flushes.
TEST(PacketBuffer, OverfillBuffer) {
TickTimer tick_timer;
PacketBuffer buffer(10, &tick_timer); // 10 packets.
PacketGenerator gen(0, 0, 0, 10);
StrictMock<MockStatisticsCalculator> mock_stats;
// Insert 10 small packets; should be ok.
const int payload_len = 10;
int i;
for (i = 0; i < 10; ++i) {
EXPECT_EQ(PacketBuffer::kOK,
buffer.InsertPacket(gen.NextPacket(payload_len), &mock_stats));
}
EXPECT_EQ(10u, buffer.NumPacketsInBuffer());
uint32_t next_ts;
EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&next_ts));
EXPECT_EQ(0u, next_ts); // Expect first inserted packet to be first in line.
const Packet packet = gen.NextPacket(payload_len);
// Insert 11th packet; should flush the buffer and insert it after flushing.
EXPECT_EQ(PacketBuffer::kFlushed,
buffer.InsertPacket(packet.Clone(), &mock_stats));
EXPECT_EQ(1u, buffer.NumPacketsInBuffer());
EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&next_ts));
// Expect last inserted packet to be first in line.
EXPECT_EQ(packet.timestamp, next_ts);
// Flush buffer to delete all packets.
buffer.Flush();
}
// Test inserting a list of packets.
TEST(PacketBuffer, InsertPacketList) {
TickTimer tick_timer;
PacketBuffer buffer(10, &tick_timer); // 10 packets.
PacketGenerator gen(0, 0, 0, 10);
PacketList list;
const int payload_len = 10;
// Insert 10 small packets.
for (int i = 0; i < 10; ++i) {
list.push_back(gen.NextPacket(payload_len));
}
MockDecoderDatabase decoder_database;
auto factory = CreateBuiltinAudioDecoderFactory();
const DecoderDatabase::DecoderInfo info(NetEqDecoder::kDecoderPCMu, factory);
EXPECT_CALL(decoder_database, GetDecoderInfo(0))
.WillRepeatedly(Return(&info));
StrictMock<MockStatisticsCalculator> mock_stats;
rtc::Optional<uint8_t> current_pt;
rtc::Optional<uint8_t> current_cng_pt;
EXPECT_EQ(PacketBuffer::kOK,
buffer.InsertPacketList(&list, decoder_database, &current_pt,
&current_cng_pt, &mock_stats));
EXPECT_TRUE(list.empty()); // The PacketBuffer should have depleted the list.
EXPECT_EQ(10u, buffer.NumPacketsInBuffer());
EXPECT_EQ(rtc::Optional<uint8_t>(0),
current_pt); // Current payload type changed to 0.
EXPECT_FALSE(current_cng_pt); // CNG payload type not changed.
buffer.Flush(); // Clean up.
EXPECT_CALL(decoder_database, Die()); // Called when object is deleted.
}
// Test inserting a list of packets. Last packet is of a different payload type.
// Expecting the buffer to flush.
// TODO(hlundin): Remove this test when legacy operation is no longer needed.
TEST(PacketBuffer, InsertPacketListChangePayloadType) {
TickTimer tick_timer;
PacketBuffer buffer(10, &tick_timer); // 10 packets.
PacketGenerator gen(0, 0, 0, 10);
PacketList list;
const int payload_len = 10;
// Insert 10 small packets.
for (int i = 0; i < 10; ++i) {
list.push_back(gen.NextPacket(payload_len));
}
// Insert 11th packet of another payload type (not CNG).
{
Packet packet = gen.NextPacket(payload_len);
packet.payload_type = 1;
list.push_back(std::move(packet));
}
MockDecoderDatabase decoder_database;
auto factory = CreateBuiltinAudioDecoderFactory();
const DecoderDatabase::DecoderInfo info0(NetEqDecoder::kDecoderPCMu, factory);
EXPECT_CALL(decoder_database, GetDecoderInfo(0))
.WillRepeatedly(Return(&info0));
const DecoderDatabase::DecoderInfo info1(NetEqDecoder::kDecoderPCMa, factory);
EXPECT_CALL(decoder_database, GetDecoderInfo(1))
.WillRepeatedly(Return(&info1));
StrictMock<MockStatisticsCalculator> mock_stats;
rtc::Optional<uint8_t> current_pt;
rtc::Optional<uint8_t> current_cng_pt;
EXPECT_EQ(PacketBuffer::kFlushed,
buffer.InsertPacketList(&list, decoder_database, &current_pt,
&current_cng_pt, &mock_stats));
EXPECT_TRUE(list.empty()); // The PacketBuffer should have depleted the list.
EXPECT_EQ(1u, buffer.NumPacketsInBuffer()); // Only the last packet.
EXPECT_EQ(rtc::Optional<uint8_t>(1),
current_pt); // Current payload type changed to 1.
EXPECT_FALSE(current_cng_pt); // CNG payload type not changed.
buffer.Flush(); // Clean up.
EXPECT_CALL(decoder_database, Die()); // Called when object is deleted.
}
TEST(PacketBuffer, ExtractOrderRedundancy) {
TickTimer tick_timer;
PacketBuffer buffer(100, &tick_timer); // 100 packets.
const int kPackets = 18;
const int kFrameSize = 10;
const int kPayloadLength = 10;
PacketsToInsert packet_facts[kPackets] = {
{0xFFFD, 0xFFFFFFD7, 0, true, 0},
{0xFFFE, 0xFFFFFFE1, 0, true, 1},
{0xFFFE, 0xFFFFFFD7, 1, false, -1},
{0xFFFF, 0xFFFFFFEB, 0, true, 2},
{0xFFFF, 0xFFFFFFE1, 1, false, -1},
{0x0000, 0xFFFFFFF5, 0, true, 3},
{0x0000, 0xFFFFFFEB, 1, false, -1},
{0x0001, 0xFFFFFFFF, 0, true, 4},
{0x0001, 0xFFFFFFF5, 1, false, -1},
{0x0002, 0x0000000A, 0, true, 5},
{0x0002, 0xFFFFFFFF, 1, false, -1},
{0x0003, 0x0000000A, 1, false, -1},
{0x0004, 0x0000001E, 0, true, 7},
{0x0004, 0x00000014, 1, false, 6},
{0x0005, 0x0000001E, 0, true, -1},
{0x0005, 0x00000014, 1, false, -1},
{0x0006, 0x00000028, 0, true, 8},
{0x0006, 0x0000001E, 1, false, -1},
};
const size_t kExpectPacketsInBuffer = 9;
std::vector<Packet> expect_order(kExpectPacketsInBuffer);
PacketGenerator gen(0, 0, 0, kFrameSize);
StrictMock<MockStatisticsCalculator> mock_stats;
// Interleaving the EXPECT_CALL sequence with expectations on the MockFunction
// check ensures that exactly one call to PacketsDiscarded happens in each
// DiscardNextPacket call.
InSequence s;
MockFunction<void(int check_point_id)> check;
for (int i = 0; i < kPackets; ++i) {
gen.Reset(packet_facts[i].sequence_number,
packet_facts[i].timestamp,
packet_facts[i].payload_type,
kFrameSize);
Packet packet = gen.NextPacket(kPayloadLength);
packet.priority.codec_level = packet_facts[i].primary ? 0 : 1;
if (packet_facts[i].extract_order < 0) {
if (packet.priority.codec_level > 0) {
EXPECT_CALL(mock_stats, SecondaryPacketsDiscarded(1));
} else {
EXPECT_CALL(mock_stats, PacketsDiscarded(1));
}
}
EXPECT_CALL(check, Call(i));
EXPECT_EQ(PacketBuffer::kOK,
buffer.InsertPacket(packet.Clone(), &mock_stats));
if (packet_facts[i].extract_order >= 0) {
expect_order[packet_facts[i].extract_order] = std::move(packet);
}
check.Call(i);
}
EXPECT_EQ(kExpectPacketsInBuffer, buffer.NumPacketsInBuffer());
for (size_t i = 0; i < kExpectPacketsInBuffer; ++i) {
const rtc::Optional<Packet> packet = buffer.GetNextPacket();
EXPECT_EQ(packet, expect_order[i]); // Compare contents.
}
EXPECT_TRUE(buffer.Empty());
}
TEST(PacketBuffer, DiscardPackets) {
TickTimer tick_timer;
PacketBuffer buffer(100, &tick_timer); // 100 packets.
const uint16_t start_seq_no = 17;
const uint32_t start_ts = 4711;
const uint32_t ts_increment = 10;
PacketGenerator gen(start_seq_no, start_ts, 0, ts_increment);
PacketList list;
const int payload_len = 10;
StrictMock<MockStatisticsCalculator> mock_stats;
constexpr int kTotalPackets = 10;
// Insert 10 small packets.
for (int i = 0; i < kTotalPackets; ++i) {
buffer.InsertPacket(gen.NextPacket(payload_len), &mock_stats);
}
EXPECT_EQ(10u, buffer.NumPacketsInBuffer());
uint32_t current_ts = start_ts;
// Discard them one by one and make sure that the right packets are at the
// front of the buffer.
constexpr int kDiscardPackets = 5;
// Interleaving the EXPECT_CALL sequence with expectations on the MockFunction
// check ensures that exactly one call to PacketsDiscarded happens in each
// DiscardNextPacket call.
InSequence s;
MockFunction<void(int check_point_id)> check;
for (int i = 0; i < kDiscardPackets; ++i) {
uint32_t ts;
EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&ts));
EXPECT_EQ(current_ts, ts);
EXPECT_CALL(mock_stats, PacketsDiscarded(1));
EXPECT_CALL(check, Call(i));
EXPECT_EQ(PacketBuffer::kOK, buffer.DiscardNextPacket(&mock_stats));
current_ts += ts_increment;
check.Call(i);
}
constexpr int kRemainingPackets = kTotalPackets - kDiscardPackets;
// This will discard all remaining packets but one. The oldest packet is older
// than the indicated horizon_samples, and will thus be left in the buffer.
constexpr size_t kSkipPackets = 1;
EXPECT_CALL(mock_stats, PacketsDiscarded(1))
.Times(kRemainingPackets - kSkipPackets);
EXPECT_CALL(check, Call(17)); // Arbitrary id number.
buffer.DiscardOldPackets(start_ts + kTotalPackets * ts_increment,
kRemainingPackets * ts_increment, &mock_stats);
check.Call(17); // Same arbitrary id number.
EXPECT_EQ(kSkipPackets, buffer.NumPacketsInBuffer());
uint32_t ts;
EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&ts));
EXPECT_EQ(current_ts, ts);
// Discard all remaining packets.
EXPECT_CALL(mock_stats, PacketsDiscarded(kSkipPackets));
buffer.DiscardAllOldPackets(start_ts + kTotalPackets * ts_increment,
&mock_stats);
EXPECT_TRUE(buffer.Empty());
}
TEST(PacketBuffer, Reordering) {
TickTimer tick_timer;
PacketBuffer buffer(100, &tick_timer); // 100 packets.
const uint16_t start_seq_no = 17;
const uint32_t start_ts = 4711;
const uint32_t ts_increment = 10;
PacketGenerator gen(start_seq_no, start_ts, 0, ts_increment);
const int payload_len = 10;
// Generate 10 small packets and insert them into a PacketList. Insert every
// odd packet to the front, and every even packet to the back, thus creating
// a (rather strange) reordering.
PacketList list;
for (int i = 0; i < 10; ++i) {
Packet packet = gen.NextPacket(payload_len);
if (i % 2) {
list.push_front(std::move(packet));
} else {
list.push_back(std::move(packet));
}
}
MockDecoderDatabase decoder_database;
auto factory = CreateBuiltinAudioDecoderFactory();
const DecoderDatabase::DecoderInfo info(NetEqDecoder::kDecoderPCMu, factory);
EXPECT_CALL(decoder_database, GetDecoderInfo(0))
.WillRepeatedly(Return(&info));
rtc::Optional<uint8_t> current_pt;
rtc::Optional<uint8_t> current_cng_pt;
StrictMock<MockStatisticsCalculator> mock_stats;
EXPECT_EQ(PacketBuffer::kOK,
buffer.InsertPacketList(&list, decoder_database, &current_pt,
&current_cng_pt, &mock_stats));
EXPECT_EQ(10u, buffer.NumPacketsInBuffer());
// Extract them and make sure that come out in the right order.
uint32_t current_ts = start_ts;
for (int i = 0; i < 10; ++i) {
const rtc::Optional<Packet> packet = buffer.GetNextPacket();
ASSERT_TRUE(packet);
EXPECT_EQ(current_ts, packet->timestamp);
current_ts += ts_increment;
}
EXPECT_TRUE(buffer.Empty());
EXPECT_CALL(decoder_database, Die()); // Called when object is deleted.
}
// The test first inserts a packet with narrow-band CNG, then a packet with
// wide-band speech. The expected behavior of the packet buffer is to detect a
// change in sample rate, even though no speech packet has been inserted before,
// and flush out the CNG packet.
TEST(PacketBuffer, CngFirstThenSpeechWithNewSampleRate) {
TickTimer tick_timer;
PacketBuffer buffer(10, &tick_timer); // 10 packets.
const uint8_t kCngPt = 13;
const int kPayloadLen = 10;
const uint8_t kSpeechPt = 100;
MockDecoderDatabase decoder_database;
auto factory = CreateBuiltinAudioDecoderFactory();
const DecoderDatabase::DecoderInfo info_cng(NetEqDecoder::kDecoderCNGnb,
factory);
EXPECT_CALL(decoder_database, GetDecoderInfo(kCngPt))
.WillRepeatedly(Return(&info_cng));
const DecoderDatabase::DecoderInfo info_speech(NetEqDecoder::kDecoderPCM16Bwb,
factory);
EXPECT_CALL(decoder_database, GetDecoderInfo(kSpeechPt))
.WillRepeatedly(Return(&info_speech));
// Insert first packet, which is narrow-band CNG.
PacketGenerator gen(0, 0, kCngPt, 10);
PacketList list;
list.push_back(gen.NextPacket(kPayloadLen));
rtc::Optional<uint8_t> current_pt;
rtc::Optional<uint8_t> current_cng_pt;
StrictMock<MockStatisticsCalculator> mock_stats;
EXPECT_EQ(PacketBuffer::kOK,
buffer.InsertPacketList(&list, decoder_database, &current_pt,
&current_cng_pt, &mock_stats));
EXPECT_TRUE(list.empty());
EXPECT_EQ(1u, buffer.NumPacketsInBuffer());
ASSERT_TRUE(buffer.PeekNextPacket());
EXPECT_EQ(kCngPt, buffer.PeekNextPacket()->payload_type);
EXPECT_FALSE(current_pt); // Current payload type not set.
EXPECT_EQ(rtc::Optional<uint8_t>(kCngPt),
current_cng_pt); // CNG payload type set.
// Insert second packet, which is wide-band speech.
{
Packet packet = gen.NextPacket(kPayloadLen);
packet.payload_type = kSpeechPt;
list.push_back(std::move(packet));
}
// Expect the buffer to flush out the CNG packet, since it does not match the
// new speech sample rate.
EXPECT_EQ(PacketBuffer::kFlushed,
buffer.InsertPacketList(&list, decoder_database, &current_pt,
&current_cng_pt, &mock_stats));
EXPECT_TRUE(list.empty());
EXPECT_EQ(1u, buffer.NumPacketsInBuffer());
ASSERT_TRUE(buffer.PeekNextPacket());
EXPECT_EQ(kSpeechPt, buffer.PeekNextPacket()->payload_type);
EXPECT_EQ(rtc::Optional<uint8_t>(kSpeechPt),
current_pt); // Current payload type set.
EXPECT_FALSE(current_cng_pt); // CNG payload type reset.
buffer.Flush(); // Clean up.
EXPECT_CALL(decoder_database, Die()); // Called when object is deleted.
}
TEST(PacketBuffer, Failures) {
const uint16_t start_seq_no = 17;
const uint32_t start_ts = 4711;
const uint32_t ts_increment = 10;
int payload_len = 100;
PacketGenerator gen(start_seq_no, start_ts, 0, ts_increment);
TickTimer tick_timer;
StrictMock<MockStatisticsCalculator> mock_stats;
PacketBuffer* buffer = new PacketBuffer(100, &tick_timer); // 100 packets.
{
Packet packet = gen.NextPacket(payload_len);
packet.payload.Clear();
EXPECT_EQ(PacketBuffer::kInvalidPacket,
buffer->InsertPacket(std::move(packet), &mock_stats));
}
// Buffer should still be empty. Test all empty-checks.
uint32_t temp_ts;
EXPECT_EQ(PacketBuffer::kBufferEmpty, buffer->NextTimestamp(&temp_ts));
EXPECT_EQ(PacketBuffer::kBufferEmpty,
buffer->NextHigherTimestamp(0, &temp_ts));
EXPECT_EQ(NULL, buffer->PeekNextPacket());
EXPECT_FALSE(buffer->GetNextPacket());
// Discarding packets will not invoke mock_stats.PacketDiscarded() because the
// packet buffer is empty.
EXPECT_EQ(PacketBuffer::kBufferEmpty, buffer->DiscardNextPacket(&mock_stats));
buffer->DiscardAllOldPackets(0, &mock_stats);
// Insert one packet to make the buffer non-empty.
EXPECT_EQ(PacketBuffer::kOK,
buffer->InsertPacket(gen.NextPacket(payload_len), &mock_stats));
EXPECT_EQ(PacketBuffer::kInvalidPointer, buffer->NextTimestamp(NULL));
EXPECT_EQ(PacketBuffer::kInvalidPointer,
buffer->NextHigherTimestamp(0, NULL));
delete buffer;
// Insert packet list of three packets, where the second packet has an invalid
// payload. Expect first packet to be inserted, and the remaining two to be
// discarded.
buffer = new PacketBuffer(100, &tick_timer); // 100 packets.
PacketList list;
list.push_back(gen.NextPacket(payload_len)); // Valid packet.
{
Packet packet = gen.NextPacket(payload_len);
packet.payload.Clear(); // Invalid.
list.push_back(std::move(packet));
}
list.push_back(gen.NextPacket(payload_len)); // Valid packet.
MockDecoderDatabase decoder_database;
auto factory = CreateBuiltinAudioDecoderFactory();
const DecoderDatabase::DecoderInfo info(NetEqDecoder::kDecoderPCMu, factory);
EXPECT_CALL(decoder_database, GetDecoderInfo(0))
.WillRepeatedly(Return(&info));
rtc::Optional<uint8_t> current_pt;
rtc::Optional<uint8_t> current_cng_pt;
EXPECT_EQ(PacketBuffer::kInvalidPacket,
buffer->InsertPacketList(&list, decoder_database, &current_pt,
&current_cng_pt, &mock_stats));
EXPECT_TRUE(list.empty()); // The PacketBuffer should have depleted the list.
EXPECT_EQ(1u, buffer->NumPacketsInBuffer());
delete buffer;
EXPECT_CALL(decoder_database, Die()); // Called when object is deleted.
}
// Test packet comparison function.
// The function should return true if the first packet "goes before" the second.
TEST(PacketBuffer, ComparePackets) {
PacketGenerator gen(0, 0, 0, 10);
Packet a(gen.NextPacket(10)); // SN = 0, TS = 0.
Packet b(gen.NextPacket(10)); // SN = 1, TS = 10.
EXPECT_FALSE(a == b);
EXPECT_TRUE(a != b);
EXPECT_TRUE(a < b);
EXPECT_FALSE(a > b);
EXPECT_TRUE(a <= b);
EXPECT_FALSE(a >= b);
// Testing wrap-around case; 'a' is earlier but has a larger timestamp value.
a.timestamp = 0xFFFFFFFF - 10;
EXPECT_FALSE(a == b);
EXPECT_TRUE(a != b);
EXPECT_TRUE(a < b);
EXPECT_FALSE(a > b);
EXPECT_TRUE(a <= b);
EXPECT_FALSE(a >= b);
// Test equal packets.
EXPECT_TRUE(a == a);
EXPECT_FALSE(a != a);
EXPECT_FALSE(a < a);
EXPECT_FALSE(a > a);
EXPECT_TRUE(a <= a);
EXPECT_TRUE(a >= a);
// Test equal timestamps but different sequence numbers (0 and 1).
a.timestamp = b.timestamp;
EXPECT_FALSE(a == b);
EXPECT_TRUE(a != b);
EXPECT_TRUE(a < b);
EXPECT_FALSE(a > b);
EXPECT_TRUE(a <= b);
EXPECT_FALSE(a >= b);
// Test equal timestamps but different sequence numbers (32767 and 1).
a.sequence_number = 0xFFFF;
EXPECT_FALSE(a == b);
EXPECT_TRUE(a != b);
EXPECT_TRUE(a < b);
EXPECT_FALSE(a > b);
EXPECT_TRUE(a <= b);
EXPECT_FALSE(a >= b);
// Test equal timestamps and sequence numbers, but differing priorities.
a.sequence_number = b.sequence_number;
a.priority = {1, 0};
b.priority = {0, 0};
// a after b
EXPECT_FALSE(a == b);
EXPECT_TRUE(a != b);
EXPECT_FALSE(a < b);
EXPECT_TRUE(a > b);
EXPECT_FALSE(a <= b);
EXPECT_TRUE(a >= b);
Packet c(gen.NextPacket(0)); // SN = 2, TS = 20.
Packet d(gen.NextPacket(0)); // SN = 3, TS = 20.
c.timestamp = b.timestamp;
d.timestamp = b.timestamp;
c.sequence_number = b.sequence_number;
d.sequence_number = b.sequence_number;
c.priority = {1, 1};
d.priority = {0, 1};
// c after d
EXPECT_FALSE(c == d);
EXPECT_TRUE(c != d);
EXPECT_FALSE(c < d);
EXPECT_TRUE(c > d);
EXPECT_FALSE(c <= d);
EXPECT_TRUE(c >= d);
// c after a
EXPECT_FALSE(c == a);
EXPECT_TRUE(c != a);
EXPECT_FALSE(c < a);
EXPECT_TRUE(c > a);
EXPECT_FALSE(c <= a);
EXPECT_TRUE(c >= a);
// c after b
EXPECT_FALSE(c == b);
EXPECT_TRUE(c != b);
EXPECT_FALSE(c < b);
EXPECT_TRUE(c > b);
EXPECT_FALSE(c <= b);
EXPECT_TRUE(c >= b);
// a after d
EXPECT_FALSE(a == d);
EXPECT_TRUE(a != d);
EXPECT_FALSE(a < d);
EXPECT_TRUE(a > d);
EXPECT_FALSE(a <= d);
EXPECT_TRUE(a >= d);
// d after b
EXPECT_FALSE(d == b);
EXPECT_TRUE(d != b);
EXPECT_FALSE(d < b);
EXPECT_TRUE(d > b);
EXPECT_FALSE(d <= b);
EXPECT_TRUE(d >= b);
}
namespace {
void TestIsObsoleteTimestamp(uint32_t limit_timestamp) {
// Check with zero horizon, which implies that the horizon is at 2^31, i.e.,
// half the timestamp range.
static const uint32_t kZeroHorizon = 0;
static const uint32_t k2Pow31Minus1 = 0x7FFFFFFF;
// Timestamp on the limit is not old.
EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp, limit_timestamp, kZeroHorizon));
// 1 sample behind is old.
EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp - 1, limit_timestamp, kZeroHorizon));
// 2^31 - 1 samples behind is old.
EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp - k2Pow31Minus1, limit_timestamp, kZeroHorizon));
// 1 sample ahead is not old.
EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp + 1, limit_timestamp, kZeroHorizon));
// If |t1-t2|=2^31 and t1>t2, t2 is older than t1 but not the opposite.
uint32_t other_timestamp = limit_timestamp + (1 << 31);
uint32_t lowest_timestamp = std::min(limit_timestamp, other_timestamp);
uint32_t highest_timestamp = std::max(limit_timestamp, other_timestamp);
EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp(
lowest_timestamp, highest_timestamp, kZeroHorizon));
EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(
highest_timestamp, lowest_timestamp, kZeroHorizon));
// Fixed horizon at 10 samples.
static const uint32_t kHorizon = 10;
// Timestamp on the limit is not old.
EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp, limit_timestamp, kHorizon));
// 1 sample behind is old.
EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp - 1, limit_timestamp, kHorizon));
// 9 samples behind is old.
EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp - 9, limit_timestamp, kHorizon));
// 10 samples behind is not old.
EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp - 10, limit_timestamp, kHorizon));
// 2^31 - 1 samples behind is not old.
EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp - k2Pow31Minus1, limit_timestamp, kHorizon));
// 1 sample ahead is not old.
EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp + 1, limit_timestamp, kHorizon));
// 2^31 samples ahead is not old.
EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(
limit_timestamp + (1 << 31), limit_timestamp, kHorizon));
}
} // namespace
// Test the IsObsoleteTimestamp method with different limit timestamps.
TEST(PacketBuffer, IsObsoleteTimestamp) {
TestIsObsoleteTimestamp(0);
TestIsObsoleteTimestamp(1);
TestIsObsoleteTimestamp(0xFFFFFFFF); // -1 in uint32_t.
TestIsObsoleteTimestamp(0x80000000); // 2^31.
TestIsObsoleteTimestamp(0x80000001); // 2^31 + 1.
TestIsObsoleteTimestamp(0x7FFFFFFF); // 2^31 - 1.
}
} // namespace webrtc