1. Fix the case of key frame accumulation being incorrect due to the chunk
size being computed at the time of leak based on input frame rate. The issue
is that the count is computed based on key frame ratio and the actual chunk
size computed from current input frame rate. These can be wildly different
especially at the beginning of the stream (key frame ratio defaults based
on 30 fps) resulting in incorrect key frame accumulation causing large frame
drops when the input frame rate is low.
2. Add large delta frame compensation. The current code accounts for key frames
but not large delta frames. This is a common occurence in some application
(remote desktop as an example)
3. Fixes an issue identified by the unit tests. The accumulation of
key frames had an issue in the scenario of a high key frame ratio where
the full key frame was not being accounted for.
3. Removes fast mode and other methods that are mostly dead code.
4. Cleans up variable names as per chromium style.
Review URL: https://codereview.webrtc.org/1750493002
Cr-Commit-Position: refs/heads/master@{#11884}
293 lines
10 KiB
C++
293 lines
10 KiB
C++
/*
|
|
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/video_coding/utility/frame_dropper.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#include "webrtc/base/logging.h"
|
|
#include "webrtc/system_wrappers/include/trace.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
|
|
const float kDefaultFrameSizeAlpha = 0.9f;
|
|
const float kDefaultKeyFrameRatioAlpha = 0.99f;
|
|
// 1 key frame every 10th second in 30 fps.
|
|
const float kDefaultKeyFrameRatioValue = 1 / 300.0f;
|
|
|
|
const float kDefaultDropRatioAlpha = 0.9f;
|
|
const float kDefaultDropRatioValue = 0.96f;
|
|
// Maximum duration over which frames are continuously dropped.
|
|
const float kDefaultMaxDropDurationSecs = 4.0f;
|
|
|
|
// Default target bitrate.
|
|
// TODO(isheriff): Should this be higher to avoid dropping too many packets when
|
|
// the bandwidth is unknown at the start ?
|
|
const float kDefaultTargetBitrateKbps = 300.0f;
|
|
const float kDefaultIncomingFrameRate = 30;
|
|
const float kLeakyBucketSizeSeconds = 0.5f;
|
|
|
|
// A delta frame that is bigger than |kLargeDeltaFactor| times the average
|
|
// delta frame is a large frame that is spread out for accumulation.
|
|
const int kLargeDeltaFactor = 3;
|
|
|
|
// Cap on the frame size accumulator to prevent excessive drops.
|
|
const float kAccumulatorCapBufferSizeSecs = 3.0f;
|
|
} // namespace
|
|
|
|
FrameDropper::FrameDropper()
|
|
: key_frame_ratio_(kDefaultKeyFrameRatioAlpha),
|
|
delta_frame_size_avg_kbits_(kDefaultFrameSizeAlpha),
|
|
drop_ratio_(kDefaultDropRatioAlpha, kDefaultDropRatioValue),
|
|
enabled_(true),
|
|
max_drop_duration_secs_(kDefaultMaxDropDurationSecs) {
|
|
Reset();
|
|
}
|
|
|
|
FrameDropper::FrameDropper(float max_drop_duration_secs)
|
|
: key_frame_ratio_(kDefaultKeyFrameRatioAlpha),
|
|
delta_frame_size_avg_kbits_(kDefaultFrameSizeAlpha),
|
|
drop_ratio_(kDefaultDropRatioAlpha, kDefaultDropRatioValue),
|
|
enabled_(true),
|
|
max_drop_duration_secs_(max_drop_duration_secs) {
|
|
Reset();
|
|
}
|
|
|
|
void FrameDropper::Reset() {
|
|
key_frame_ratio_.Reset(kDefaultKeyFrameRatioAlpha);
|
|
key_frame_ratio_.Apply(1.0f, kDefaultKeyFrameRatioValue);
|
|
delta_frame_size_avg_kbits_.Reset(kDefaultFrameSizeAlpha);
|
|
|
|
accumulator_ = 0.0f;
|
|
accumulator_max_ = kDefaultTargetBitrateKbps / 2;
|
|
target_bitrate_ = kDefaultTargetBitrateKbps;
|
|
incoming_frame_rate_ = kDefaultIncomingFrameRate;
|
|
|
|
large_frame_accumulation_count_ = 0;
|
|
large_frame_accumulation_spread_ = 0.5 * kDefaultIncomingFrameRate;
|
|
|
|
drop_next_ = false;
|
|
drop_ratio_.Reset(0.9f);
|
|
drop_ratio_.Apply(0.0f, 0.0f);
|
|
drop_count_ = 0;
|
|
was_below_max_ = true;
|
|
}
|
|
|
|
void FrameDropper::Enable(bool enable) {
|
|
enabled_ = enable;
|
|
}
|
|
|
|
void FrameDropper::Fill(size_t framesize_bytes, bool delta_frame) {
|
|
if (!enabled_) {
|
|
return;
|
|
}
|
|
float framesize_kbits = 8.0f * static_cast<float>(framesize_bytes) / 1000.0f;
|
|
if (!delta_frame) {
|
|
key_frame_ratio_.Apply(1.0, 1.0);
|
|
// Do not spread if we are already doing it (or we risk dropping bits that
|
|
// need accumulation). Given we compute the key
|
|
// frame ratio and spread based on that, this should not normally happen.
|
|
if (large_frame_accumulation_count_ == 0) {
|
|
if (key_frame_ratio_.filtered() > 1e-5 &&
|
|
1 / key_frame_ratio_.filtered() < large_frame_accumulation_spread_) {
|
|
large_frame_accumulation_count_ =
|
|
static_cast<int32_t>(1 / key_frame_ratio_.filtered() + 0.5);
|
|
} else {
|
|
large_frame_accumulation_count_ =
|
|
static_cast<int32_t>(large_frame_accumulation_spread_ + 0.5);
|
|
}
|
|
large_frame_accumulation_chunk_size_ =
|
|
framesize_kbits / large_frame_accumulation_count_;
|
|
framesize_kbits = 0;
|
|
}
|
|
} else {
|
|
// Identify if it is an unusually large delta frame and spread accumulation
|
|
// if that is the case.
|
|
if (delta_frame_size_avg_kbits_.filtered() != -1 &&
|
|
(framesize_kbits >
|
|
kLargeDeltaFactor * delta_frame_size_avg_kbits_.filtered()) &&
|
|
large_frame_accumulation_count_ == 0) {
|
|
large_frame_accumulation_count_ =
|
|
static_cast<int32_t>(large_frame_accumulation_spread_ + 0.5);
|
|
large_frame_accumulation_chunk_size_ =
|
|
framesize_kbits / large_frame_accumulation_count_;
|
|
framesize_kbits = 0;
|
|
} else {
|
|
delta_frame_size_avg_kbits_.Apply(1, framesize_kbits);
|
|
}
|
|
key_frame_ratio_.Apply(1.0, 0.0);
|
|
}
|
|
// Change the level of the accumulator (bucket)
|
|
accumulator_ += framesize_kbits;
|
|
CapAccumulator();
|
|
LOG(LS_VERBOSE) << "FILL acc " << accumulator_ << " max " << accumulator_max_
|
|
<< " count " << large_frame_accumulation_count_ << " chunk "
|
|
<< large_frame_accumulation_chunk_size_ << " spread "
|
|
<< large_frame_accumulation_spread_ << " delta avg "
|
|
<< delta_frame_size_avg_kbits_.filtered() << " SIZE "
|
|
<< framesize_kbits << "key frame ratio "
|
|
<< key_frame_ratio_.filtered();
|
|
}
|
|
|
|
void FrameDropper::Leak(uint32_t input_framerate) {
|
|
if (!enabled_) {
|
|
return;
|
|
}
|
|
if (input_framerate < 1) {
|
|
return;
|
|
}
|
|
if (target_bitrate_ < 0.0f) {
|
|
return;
|
|
}
|
|
// Add lower bound for large frame accumulation spread.
|
|
large_frame_accumulation_spread_ = std::max(0.5 * input_framerate, 5.0);
|
|
// Expected bits per frame based on current input frame rate.
|
|
float expected_bits_per_frame = target_bitrate_ / input_framerate;
|
|
if (large_frame_accumulation_count_ > 0) {
|
|
expected_bits_per_frame -= large_frame_accumulation_chunk_size_;
|
|
--large_frame_accumulation_count_;
|
|
}
|
|
accumulator_ -= expected_bits_per_frame;
|
|
if (accumulator_ < 0.0f) {
|
|
accumulator_ = 0.0f;
|
|
}
|
|
LOG(LS_VERBOSE) << "LEAK acc " << accumulator_ << " max " << accumulator_max_
|
|
<< " count " << large_frame_accumulation_count_ << " spread "
|
|
<< large_frame_accumulation_spread_ << " delta avg "
|
|
<< delta_frame_size_avg_kbits_.filtered();
|
|
UpdateRatio();
|
|
}
|
|
|
|
void FrameDropper::UpdateRatio() {
|
|
if (accumulator_ > 1.3f * accumulator_max_) {
|
|
// Too far above accumulator max, react faster
|
|
drop_ratio_.UpdateBase(0.8f);
|
|
} else {
|
|
// Go back to normal reaction
|
|
drop_ratio_.UpdateBase(0.9f);
|
|
}
|
|
if (accumulator_ > accumulator_max_) {
|
|
// We are above accumulator max, and should ideally
|
|
// drop a frame. Increase the dropRatio and drop
|
|
// the frame later.
|
|
if (was_below_max_) {
|
|
drop_next_ = true;
|
|
}
|
|
drop_ratio_.Apply(1.0f, 1.0f);
|
|
drop_ratio_.UpdateBase(0.9f);
|
|
} else {
|
|
drop_ratio_.Apply(1.0f, 0.0f);
|
|
}
|
|
was_below_max_ = accumulator_ < accumulator_max_;
|
|
}
|
|
|
|
// This function signals when to drop frames to the caller. It makes use of the
|
|
// dropRatio
|
|
// to smooth out the drops over time.
|
|
bool FrameDropper::DropFrame() {
|
|
if (!enabled_) {
|
|
return false;
|
|
}
|
|
if (drop_next_) {
|
|
drop_next_ = false;
|
|
drop_count_ = 0;
|
|
}
|
|
LOG(LS_VERBOSE) << " drop_ratio_ " << drop_ratio_.filtered()
|
|
<< " drop_count_ " << drop_count_;
|
|
|
|
if (drop_ratio_.filtered() >= 0.5f) { // Drops per keep
|
|
// limit is the number of frames we should drop between each kept frame
|
|
// to keep our drop ratio. limit is positive in this case.
|
|
float denom = 1.0f - drop_ratio_.filtered();
|
|
if (denom < 1e-5) {
|
|
denom = 1e-5f;
|
|
}
|
|
int32_t limit = static_cast<int32_t>(1.0f / denom - 1.0f + 0.5f);
|
|
// Put a bound on the max amount of dropped frames between each kept
|
|
// frame, in terms of frame rate and window size (secs).
|
|
int max_limit =
|
|
static_cast<int>(incoming_frame_rate_ * max_drop_duration_secs_);
|
|
if (limit > max_limit) {
|
|
limit = max_limit;
|
|
}
|
|
if (drop_count_ < 0) {
|
|
// Reset the drop_count_ since it was negative and should be positive.
|
|
drop_count_ = -drop_count_;
|
|
}
|
|
if (drop_count_ < limit) {
|
|
// As long we are below the limit we should drop frames.
|
|
drop_count_++;
|
|
return true;
|
|
} else {
|
|
// Only when we reset drop_count_ a frame should be kept.
|
|
drop_count_ = 0;
|
|
return false;
|
|
}
|
|
} else if (drop_ratio_.filtered() > 0.0f &&
|
|
drop_ratio_.filtered() < 0.5f) { // Keeps per drop
|
|
// limit is the number of frames we should keep between each drop
|
|
// in order to keep the drop ratio. limit is negative in this case,
|
|
// and the drop_count_ is also negative.
|
|
float denom = drop_ratio_.filtered();
|
|
if (denom < 1e-5) {
|
|
denom = 1e-5f;
|
|
}
|
|
int32_t limit = -static_cast<int32_t>(1.0f / denom - 1.0f + 0.5f);
|
|
if (drop_count_ > 0) {
|
|
// Reset the drop_count_ since we have a positive
|
|
// drop_count_, and it should be negative.
|
|
drop_count_ = -drop_count_;
|
|
}
|
|
if (drop_count_ > limit) {
|
|
if (drop_count_ == 0) {
|
|
// Drop frames when we reset drop_count_.
|
|
drop_count_--;
|
|
return true;
|
|
} else {
|
|
// Keep frames as long as we haven't reached limit.
|
|
drop_count_--;
|
|
return false;
|
|
}
|
|
} else {
|
|
drop_count_ = 0;
|
|
return false;
|
|
}
|
|
}
|
|
drop_count_ = 0;
|
|
return false;
|
|
}
|
|
|
|
void FrameDropper::SetRates(float bitrate, float incoming_frame_rate) {
|
|
// Bit rate of -1 means infinite bandwidth.
|
|
accumulator_max_ = bitrate * kLeakyBucketSizeSeconds;
|
|
if (target_bitrate_ > 0.0f && bitrate < target_bitrate_ &&
|
|
accumulator_ > accumulator_max_) {
|
|
// Rescale the accumulator level if the accumulator max decreases
|
|
accumulator_ = bitrate / target_bitrate_ * accumulator_;
|
|
}
|
|
target_bitrate_ = bitrate;
|
|
CapAccumulator();
|
|
incoming_frame_rate_ = incoming_frame_rate;
|
|
}
|
|
|
|
// Put a cap on the accumulator, i.e., don't let it grow beyond some level.
|
|
// This is a temporary fix for screencasting where very large frames from
|
|
// encoder will cause very slow response (too many frame drops).
|
|
// TODO(isheriff): Remove this now that large delta frames are also spread out ?
|
|
void FrameDropper::CapAccumulator() {
|
|
float max_accumulator = target_bitrate_ * kAccumulatorCapBufferSizeSecs;
|
|
if (accumulator_ > max_accumulator) {
|
|
accumulator_ = max_accumulator;
|
|
}
|
|
}
|
|
} // namespace webrtc
|