webrtc_m130/modules/video_coding/utility/vp9_uncompressed_header_parser.cc
Emil Vardar 2c637aa16f Register filter loop parameters' start position in VP9 frame header.
This is needed in order to create corruptions (by altering the filter loop params) to test the corruption detection algorithm.

Bug: webrtc:358039777
Change-Id: Ib26e9c0187b79c13b9862898625742def4091b91
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/360780
Reviewed-by: Erik Språng <sprang@webrtc.org>
Commit-Queue: Emil Vardar (xWF) <vardar@google.com>
Cr-Commit-Position: refs/heads/main@{#42890}
2024-08-30 07:17:11 +00:00

536 lines
15 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/utility/vp9_uncompressed_header_parser.h"
#include "absl/numeric/bits.h"
#include "absl/strings/string_view.h"
#include "rtc_base/bitstream_reader.h"
#include "rtc_base/logging.h"
#include "rtc_base/strings/string_builder.h"
namespace webrtc {
namespace {
const size_t kVp9NumRefsPerFrame = 3;
const size_t kVp9MaxRefLFDeltas = 4;
const size_t kVp9MaxModeLFDeltas = 2;
const size_t kVp9MinTileWidthB64 = 4;
const size_t kVp9MaxTileWidthB64 = 64;
void Vp9ReadColorConfig(BitstreamReader& br,
Vp9UncompressedHeader* frame_info) {
if (frame_info->profile == 2 || frame_info->profile == 3) {
frame_info->bit_detph =
br.Read<bool>() ? Vp9BitDept::k12Bit : Vp9BitDept::k10Bit;
} else {
frame_info->bit_detph = Vp9BitDept::k8Bit;
}
frame_info->color_space = static_cast<Vp9ColorSpace>(br.ReadBits(3));
if (frame_info->color_space != Vp9ColorSpace::CS_RGB) {
frame_info->color_range =
br.Read<bool>() ? Vp9ColorRange::kFull : Vp9ColorRange::kStudio;
if (frame_info->profile == 1 || frame_info->profile == 3) {
static constexpr Vp9YuvSubsampling kSubSamplings[] = {
Vp9YuvSubsampling::k444, Vp9YuvSubsampling::k440,
Vp9YuvSubsampling::k422, Vp9YuvSubsampling::k420};
frame_info->sub_sampling = kSubSamplings[br.ReadBits(2)];
if (br.Read<bool>()) {
RTC_LOG(LS_WARNING) << "Failed to parse header. Reserved bit set.";
br.Invalidate();
return;
}
} else {
// Profile 0 or 2.
frame_info->sub_sampling = Vp9YuvSubsampling::k420;
}
} else {
// SRGB
frame_info->color_range = Vp9ColorRange::kFull;
if (frame_info->profile == 1 || frame_info->profile == 3) {
frame_info->sub_sampling = Vp9YuvSubsampling::k444;
if (br.Read<bool>()) {
RTC_LOG(LS_WARNING) << "Failed to parse header. Reserved bit set.";
br.Invalidate();
}
} else {
RTC_LOG(LS_WARNING) << "Failed to parse header. 4:4:4 color not supported"
" in profile 0 or 2.";
br.Invalidate();
}
}
}
void ReadRefreshFrameFlags(BitstreamReader& br,
Vp9UncompressedHeader* frame_info) {
// Refresh frame flags.
uint8_t flags = br.Read<uint8_t>();
for (int i = 0; i < 8; ++i) {
frame_info->updated_buffers.set(i, (flags & (0x01 << (7 - i))) != 0);
}
}
void Vp9ReadFrameSize(BitstreamReader& br, Vp9UncompressedHeader* frame_info) {
// 16 bits: frame (width|height) - 1.
frame_info->frame_width = br.Read<uint16_t>() + 1;
frame_info->frame_height = br.Read<uint16_t>() + 1;
}
void Vp9ReadRenderSize(size_t total_buffer_size_bits,
BitstreamReader& br,
Vp9UncompressedHeader* frame_info) {
// render_and_frame_size_different
if (br.Read<bool>()) {
frame_info->render_size_offset_bits =
total_buffer_size_bits - br.RemainingBitCount();
// 16 bits: render (width|height) - 1.
frame_info->render_width = br.Read<uint16_t>() + 1;
frame_info->render_height = br.Read<uint16_t>() + 1;
} else {
frame_info->render_height = frame_info->frame_height;
frame_info->render_width = frame_info->frame_width;
}
}
void Vp9ReadFrameSizeFromRefs(BitstreamReader& br,
Vp9UncompressedHeader* frame_info) {
for (size_t i = 0; i < kVp9NumRefsPerFrame; i++) {
// Size in refs.
if (br.Read<bool>()) {
frame_info->infer_size_from_reference = frame_info->reference_buffers[i];
return;
}
}
Vp9ReadFrameSize(br, frame_info);
}
void Vp9ReadLoopfilter(BitstreamReader& br) {
// 6 bits: filter level.
// 3 bits: sharpness level.
br.ConsumeBits(9);
if (!br.Read<bool>()) { // mode_ref_delta_enabled
return;
}
if (!br.Read<bool>()) { // mode_ref_delta_update
return;
}
for (size_t i = 0; i < kVp9MaxRefLFDeltas; i++) {
if (br.Read<bool>()) { // update_ref_delta
br.ConsumeBits(7);
}
}
for (size_t i = 0; i < kVp9MaxModeLFDeltas; i++) {
if (br.Read<bool>()) { // update_mode_delta
br.ConsumeBits(7);
}
}
}
void Vp9ReadQp(BitstreamReader& br, Vp9UncompressedHeader* frame_info) {
frame_info->base_qp = br.Read<uint8_t>();
// yuv offsets
frame_info->is_lossless = frame_info->base_qp == 0;
for (int i = 0; i < 3; ++i) {
if (br.Read<bool>()) { // if delta_coded
// delta_q is a signed integer with leading 4 bits containing absolute
// value and last bit containing sign. There are are two ways to represent
// zero with such encoding.
if ((br.ReadBits(5) & 0b1111'0) != 0) { // delta_q
frame_info->is_lossless = false;
}
}
}
}
void Vp9ReadSegmentationParams(BitstreamReader& br,
Vp9UncompressedHeader* frame_info) {
constexpr int kSegmentationFeatureBits[kVp9SegLvlMax] = {8, 6, 2, 0};
constexpr bool kSegmentationFeatureSigned[kVp9SegLvlMax] = {true, true, false,
false};
frame_info->segmentation_enabled = br.Read<bool>();
if (!frame_info->segmentation_enabled) {
return;
}
if (br.Read<bool>()) { // update_map
frame_info->segmentation_tree_probs.emplace();
for (int i = 0; i < 7; ++i) {
if (br.Read<bool>()) {
(*frame_info->segmentation_tree_probs)[i] = br.Read<uint8_t>();
} else {
(*frame_info->segmentation_tree_probs)[i] = 255;
}
}
// temporal_update
frame_info->segmentation_pred_prob.emplace();
if (br.Read<bool>()) {
for (int i = 0; i < 3; ++i) {
if (br.Read<bool>()) {
(*frame_info->segmentation_pred_prob)[i] = br.Read<uint8_t>();
} else {
(*frame_info->segmentation_pred_prob)[i] = 255;
}
}
} else {
frame_info->segmentation_pred_prob->fill(255);
}
}
if (br.Read<bool>()) { // segmentation_update_data
frame_info->segmentation_is_delta = br.Read<bool>();
for (size_t i = 0; i < kVp9MaxSegments; ++i) {
for (size_t j = 0; j < kVp9SegLvlMax; ++j) {
if (!br.Read<bool>()) { // feature_enabled
continue;
}
if (kSegmentationFeatureBits[j] == 0) {
// No feature bits used and no sign, just mark it and return.
frame_info->segmentation_features[i][j] = 1;
continue;
}
frame_info->segmentation_features[i][j] =
br.ReadBits(kSegmentationFeatureBits[j]);
if (kSegmentationFeatureSigned[j] && br.Read<bool>()) {
(*frame_info->segmentation_features[i][j]) *= -1;
}
}
}
}
}
void Vp9ReadTileInfo(BitstreamReader& br, Vp9UncompressedHeader* frame_info) {
size_t mi_cols = (frame_info->frame_width + 7) >> 3;
size_t sb64_cols = (mi_cols + 7) >> 3;
size_t min_log2 = 0;
while ((kVp9MaxTileWidthB64 << min_log2) < sb64_cols) {
++min_log2;
}
size_t max_log2 = 1;
while ((sb64_cols >> max_log2) >= kVp9MinTileWidthB64) {
++max_log2;
}
--max_log2;
frame_info->tile_cols_log2 = min_log2;
while (frame_info->tile_cols_log2 < max_log2) {
if (br.Read<bool>()) {
++frame_info->tile_cols_log2;
} else {
break;
}
}
frame_info->tile_rows_log2 = 0;
if (br.Read<bool>()) {
++frame_info->tile_rows_log2;
if (br.Read<bool>()) {
++frame_info->tile_rows_log2;
}
}
}
const Vp9InterpolationFilter kLiteralToType[4] = {
Vp9InterpolationFilter::kEightTapSmooth, Vp9InterpolationFilter::kEightTap,
Vp9InterpolationFilter::kEightTapSharp, Vp9InterpolationFilter::kBilinear};
} // namespace
std::string Vp9UncompressedHeader::ToString() const {
char buf[1024];
rtc::SimpleStringBuilder oss(buf);
oss << "Vp9UncompressedHeader { "
<< "profile = " << profile;
if (show_existing_frame) {
oss << ", show_existing_frame = " << *show_existing_frame << " }";
return oss.str();
}
oss << ", frame type = " << (is_keyframe ? "key" : "delta")
<< ", show_frame = " << (show_frame ? "true" : "false")
<< ", error_resilient = " << (error_resilient ? "true" : "false");
oss << ", bit_depth = ";
switch (bit_detph) {
case Vp9BitDept::k8Bit:
oss << "8bit";
break;
case Vp9BitDept::k10Bit:
oss << "10bit";
break;
case Vp9BitDept::k12Bit:
oss << "12bit";
break;
}
if (color_space) {
oss << ", color_space = ";
switch (*color_space) {
case Vp9ColorSpace::CS_UNKNOWN:
oss << "unknown";
break;
case Vp9ColorSpace::CS_BT_601:
oss << "CS_BT_601 Rec. ITU-R BT.601-7";
break;
case Vp9ColorSpace::CS_BT_709:
oss << "Rec. ITU-R BT.709-6";
break;
case Vp9ColorSpace::CS_SMPTE_170:
oss << "SMPTE-170";
break;
case Vp9ColorSpace::CS_SMPTE_240:
oss << "SMPTE-240";
break;
case Vp9ColorSpace::CS_BT_2020:
oss << "Rec. ITU-R BT.2020-2";
break;
case Vp9ColorSpace::CS_RESERVED:
oss << "Reserved";
break;
case Vp9ColorSpace::CS_RGB:
oss << "sRGB (IEC 61966-2-1)";
break;
}
}
if (color_range) {
oss << ", color_range = ";
switch (*color_range) {
case Vp9ColorRange::kFull:
oss << "full";
break;
case Vp9ColorRange::kStudio:
oss << "studio";
break;
}
}
if (sub_sampling) {
oss << ", sub_sampling = ";
switch (*sub_sampling) {
case Vp9YuvSubsampling::k444:
oss << "444";
break;
case Vp9YuvSubsampling::k440:
oss << "440";
break;
case Vp9YuvSubsampling::k422:
oss << "422";
break;
case Vp9YuvSubsampling::k420:
oss << "420";
break;
}
}
if (infer_size_from_reference) {
oss << ", infer_frame_resolution_from = " << *infer_size_from_reference;
} else {
oss << ", frame_width = " << frame_width
<< ", frame_height = " << frame_height;
}
if (render_width != 0 && render_height != 0) {
oss << ", render_width = " << render_width
<< ", render_height = " << render_height;
}
oss << ", base qp = " << base_qp;
if (reference_buffers[0] != -1) {
oss << ", last_buffer = " << reference_buffers[0];
}
if (reference_buffers[1] != -1) {
oss << ", golden_buffer = " << reference_buffers[1];
}
if (reference_buffers[2] != -1) {
oss << ", altref_buffer = " << reference_buffers[2];
}
oss << ", updated buffers = { ";
bool first = true;
for (int i = 0; i < 8; ++i) {
if (updated_buffers.test(i)) {
if (first) {
first = false;
} else {
oss << ", ";
}
oss << i;
}
}
oss << " }";
oss << ", compressed_header_size_bytes = " << compressed_header_size;
oss << " }";
return oss.str();
}
void Parse(BitstreamReader& br,
Vp9UncompressedHeader* frame_info,
bool qp_only) {
const size_t total_buffer_size_bits = br.RemainingBitCount();
// Frame marker.
if (br.ReadBits(2) != 0b10) {
RTC_LOG(LS_WARNING) << "Failed to parse header. Frame marker should be 2.";
br.Invalidate();
return;
}
// Profile has low bit first.
frame_info->profile = br.ReadBit();
frame_info->profile |= br.ReadBit() << 1;
if (frame_info->profile > 2 && br.Read<bool>()) {
RTC_LOG(LS_WARNING)
<< "Failed to parse header. Unsupported bitstream profile.";
br.Invalidate();
return;
}
// Show existing frame.
if (br.Read<bool>()) {
frame_info->show_existing_frame = br.ReadBits(3);
return;
}
// Frame type: KEY_FRAME(0), INTER_FRAME(1).
frame_info->is_keyframe = !br.Read<bool>();
frame_info->show_frame = br.Read<bool>();
frame_info->error_resilient = br.Read<bool>();
if (frame_info->is_keyframe) {
if (br.ReadBits(24) != 0x498342) {
RTC_LOG(LS_WARNING) << "Failed to parse header. Invalid sync code.";
br.Invalidate();
return;
}
Vp9ReadColorConfig(br, frame_info);
Vp9ReadFrameSize(br, frame_info);
Vp9ReadRenderSize(total_buffer_size_bits, br, frame_info);
// Key-frames implicitly update all buffers.
frame_info->updated_buffers.set();
} else {
// Non-keyframe.
bool is_intra_only = false;
if (!frame_info->show_frame) {
is_intra_only = br.Read<bool>();
}
if (!frame_info->error_resilient) {
br.ConsumeBits(2); // Reset frame context.
}
if (is_intra_only) {
if (br.ReadBits(24) != 0x498342) {
RTC_LOG(LS_WARNING) << "Failed to parse header. Invalid sync code.";
br.Invalidate();
return;
}
if (frame_info->profile > 0) {
Vp9ReadColorConfig(br, frame_info);
} else {
frame_info->color_space = Vp9ColorSpace::CS_BT_601;
frame_info->sub_sampling = Vp9YuvSubsampling::k420;
frame_info->bit_detph = Vp9BitDept::k8Bit;
}
frame_info->reference_buffers.fill(-1);
ReadRefreshFrameFlags(br, frame_info);
Vp9ReadFrameSize(br, frame_info);
Vp9ReadRenderSize(total_buffer_size_bits, br, frame_info);
} else {
ReadRefreshFrameFlags(br, frame_info);
frame_info->reference_buffers_sign_bias[0] = false;
for (size_t i = 0; i < kVp9NumRefsPerFrame; i++) {
frame_info->reference_buffers[i] = br.ReadBits(3);
frame_info->reference_buffers_sign_bias[Vp9ReferenceFrame::kLast + i] =
br.Read<bool>();
}
Vp9ReadFrameSizeFromRefs(br, frame_info);
Vp9ReadRenderSize(total_buffer_size_bits, br, frame_info);
frame_info->allow_high_precision_mv = br.Read<bool>();
// Interpolation filter.
if (br.Read<bool>()) {
frame_info->interpolation_filter = Vp9InterpolationFilter::kSwitchable;
} else {
frame_info->interpolation_filter = kLiteralToType[br.ReadBits(2)];
}
}
}
if (!frame_info->error_resilient) {
// 1 bit: Refresh frame context.
// 1 bit: Frame parallel decoding mode.
br.ConsumeBits(2);
}
// Frame context index.
frame_info->frame_context_idx = br.ReadBits(2);
frame_info->loop_filter_params_offset_bits =
total_buffer_size_bits - br.RemainingBitCount();
Vp9ReadLoopfilter(br);
// Read base QP.
Vp9ReadQp(br, frame_info);
if (qp_only) {
// Not interested in the rest of the header, return early.
return;
}
Vp9ReadSegmentationParams(br, frame_info);
Vp9ReadTileInfo(br, frame_info);
frame_info->compressed_header_size = br.Read<uint16_t>();
frame_info->uncompressed_header_size =
(total_buffer_size_bits / 8) - (br.RemainingBitCount() / 8);
}
absl::optional<Vp9UncompressedHeader> ParseUncompressedVp9Header(
rtc::ArrayView<const uint8_t> buf) {
BitstreamReader reader(buf);
Vp9UncompressedHeader frame_info;
Parse(reader, &frame_info, /*qp_only=*/false);
if (reader.Ok() && frame_info.frame_width > 0) {
return frame_info;
}
return absl::nullopt;
}
namespace vp9 {
bool GetQp(const uint8_t* buf, size_t length, int* qp) {
BitstreamReader reader(rtc::MakeArrayView(buf, length));
Vp9UncompressedHeader frame_info;
Parse(reader, &frame_info, /*qp_only=*/true);
if (!reader.Ok()) {
return false;
}
*qp = frame_info.base_qp;
return true;
}
} // namespace vp9
} // namespace webrtc