webrtc_m130/webrtc/modules/video_coding/bitrate_adjuster_unittest.cc
Stefan Holmer fb8fc5391e Improve the behavior when the BWE times out and when we have too little data to determine the incoming bitrate.
This is done by changing the RateStatistics so that it resets its window when the accumulator is empty. It also keeps a dynamic window, so that the rates computed before a full window worth of data has been received will be computed over a smaller window. This means that the rate will be closer to the true rate, but with a higher variance.

BUG=webrtc:5773
R=perkj@webrtc.org, sprang@webrtc.org

Review URL: https://codereview.webrtc.org/1908893003 .

Cr-Commit-Position: refs/heads/master@{#12470}
2016-04-22 13:48:36 +00:00

169 lines
6.7 KiB
C++

/*
* Copyright 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/modules/video_coding/include/bitrate_adjuster.h"
#include "webrtc/system_wrappers/include/clock.h"
namespace webrtc {
class BitrateAdjusterTest : public ::testing::Test {
public:
BitrateAdjusterTest()
: clock_(0),
adjuster_(&clock_, kMinAdjustedBitratePct, kMaxAdjustedBitratePct) {}
// Simulate an output bitrate for one update cycle of BitrateAdjuster.
void SimulateBitrateBps(uint32_t bitrate_bps) {
const uint32_t update_interval_ms =
BitrateAdjuster::kBitrateUpdateIntervalMs;
const uint32_t update_frame_interval =
BitrateAdjuster::kBitrateUpdateFrameInterval;
// Round up frame interval so we get one cycle passes.
const uint32_t frame_interval_ms =
(update_interval_ms + update_frame_interval - 1) /
update_frame_interval;
const size_t frame_size_bytes =
(bitrate_bps * frame_interval_ms) / (8 * 1000);
for (size_t i = 0; i < update_frame_interval; ++i) {
clock_.AdvanceTimeMilliseconds(frame_interval_ms);
adjuster_.Update(frame_size_bytes);
}
}
uint32_t GetTargetBitrateBpsPct(float pct) {
return pct * adjuster_.GetTargetBitrateBps();
}
void VerifyAdjustment() {
// The adjusted bitrate should be between the estimated bitrate and the
// target bitrate within clamp.
uint32_t target_bitrate_bps = adjuster_.GetTargetBitrateBps();
uint32_t adjusted_bitrate_bps = adjuster_.GetAdjustedBitrateBps();
uint32_t estimated_bitrate_bps = adjuster_.GetEstimatedBitrateBps();
uint32_t adjusted_lower_bound_bps =
GetTargetBitrateBpsPct(kMinAdjustedBitratePct);
uint32_t adjusted_upper_bound_bps =
GetTargetBitrateBpsPct(kMaxAdjustedBitratePct);
EXPECT_LE(adjusted_bitrate_bps, adjusted_upper_bound_bps);
EXPECT_GE(adjusted_bitrate_bps, adjusted_lower_bound_bps);
if (estimated_bitrate_bps > target_bitrate_bps) {
EXPECT_LT(adjusted_bitrate_bps, target_bitrate_bps);
}
}
protected:
static const float kMinAdjustedBitratePct;
static const float kMaxAdjustedBitratePct;
SimulatedClock clock_;
BitrateAdjuster adjuster_;
};
const float BitrateAdjusterTest::kMinAdjustedBitratePct = .5f;
const float BitrateAdjusterTest::kMaxAdjustedBitratePct = .95f;
TEST_F(BitrateAdjusterTest, VaryingBitrates) {
const uint32_t target_bitrate_bps = 640000;
adjuster_.SetTargetBitrateBps(target_bitrate_bps);
// Grossly overshoot for a little while. Adjusted bitrate should decrease.
uint32_t actual_bitrate_bps = 2 * target_bitrate_bps;
uint32_t last_adjusted_bitrate_bps = 0;
uint32_t adjusted_bitrate_bps = 0;
SimulateBitrateBps(actual_bitrate_bps);
VerifyAdjustment();
last_adjusted_bitrate_bps = adjuster_.GetAdjustedBitrateBps();
SimulateBitrateBps(actual_bitrate_bps);
VerifyAdjustment();
adjusted_bitrate_bps = adjuster_.GetAdjustedBitrateBps();
EXPECT_LE(adjusted_bitrate_bps, last_adjusted_bitrate_bps);
last_adjusted_bitrate_bps = adjusted_bitrate_bps;
// After two cycles we should've stabilized and hit the lower bound.
EXPECT_EQ(GetTargetBitrateBpsPct(kMinAdjustedBitratePct),
adjusted_bitrate_bps);
// Simulate encoder settling down. Adjusted bitrate should increase.
SimulateBitrateBps(target_bitrate_bps);
adjusted_bitrate_bps = adjuster_.GetAdjustedBitrateBps();
VerifyAdjustment();
EXPECT_GT(adjusted_bitrate_bps, last_adjusted_bitrate_bps);
last_adjusted_bitrate_bps = adjusted_bitrate_bps;
SimulateBitrateBps(target_bitrate_bps);
adjusted_bitrate_bps = adjuster_.GetAdjustedBitrateBps();
VerifyAdjustment();
EXPECT_GT(adjusted_bitrate_bps, last_adjusted_bitrate_bps);
last_adjusted_bitrate_bps = adjusted_bitrate_bps;
// After two cycles we should've stabilized and hit the upper bound.
EXPECT_EQ(GetTargetBitrateBpsPct(kMaxAdjustedBitratePct),
adjusted_bitrate_bps);
}
// Tests that large changes in target bitrate will result in immediate change
// in adjusted bitrate.
TEST_F(BitrateAdjusterTest, LargeTargetDelta) {
uint32_t target_bitrate_bps = 640000;
adjuster_.SetTargetBitrateBps(target_bitrate_bps);
EXPECT_EQ(target_bitrate_bps, adjuster_.GetAdjustedBitrateBps());
float delta_pct = BitrateAdjuster::kBitrateTolerancePct * 2;
target_bitrate_bps = (1 + delta_pct) * target_bitrate_bps;
adjuster_.SetTargetBitrateBps(target_bitrate_bps);
EXPECT_EQ(target_bitrate_bps, adjuster_.GetAdjustedBitrateBps());
target_bitrate_bps = (1 - delta_pct) * target_bitrate_bps;
adjuster_.SetTargetBitrateBps(target_bitrate_bps);
EXPECT_EQ(target_bitrate_bps, adjuster_.GetAdjustedBitrateBps());
}
// Tests that small changes in target bitrate within tolerance will not affect
// adjusted bitrate immediately.
TEST_F(BitrateAdjusterTest, SmallTargetDelta) {
const uint32_t initial_target_bitrate_bps = 640000;
uint32_t target_bitrate_bps = initial_target_bitrate_bps;
adjuster_.SetTargetBitrateBps(target_bitrate_bps);
EXPECT_EQ(initial_target_bitrate_bps, adjuster_.GetAdjustedBitrateBps());
float delta_pct = BitrateAdjuster::kBitrateTolerancePct / 2;
target_bitrate_bps = (1 + delta_pct) * target_bitrate_bps;
adjuster_.SetTargetBitrateBps(target_bitrate_bps);
EXPECT_EQ(initial_target_bitrate_bps, adjuster_.GetAdjustedBitrateBps());
target_bitrate_bps = (1 - delta_pct) * target_bitrate_bps;
adjuster_.SetTargetBitrateBps(target_bitrate_bps);
EXPECT_EQ(initial_target_bitrate_bps, adjuster_.GetAdjustedBitrateBps());
}
TEST_F(BitrateAdjusterTest, SmallTargetDeltaOverflow) {
const uint32_t initial_target_bitrate_bps = 640000;
uint32_t target_bitrate_bps = initial_target_bitrate_bps;
adjuster_.SetTargetBitrateBps(target_bitrate_bps);
EXPECT_EQ(initial_target_bitrate_bps, adjuster_.GetAdjustedBitrateBps());
float delta_pct = BitrateAdjuster::kBitrateTolerancePct / 2;
target_bitrate_bps = (1 + delta_pct) * target_bitrate_bps;
adjuster_.SetTargetBitrateBps(target_bitrate_bps);
EXPECT_EQ(initial_target_bitrate_bps, adjuster_.GetAdjustedBitrateBps());
// 1.05 * 1.05 is 1.1 which is greater than tolerance for the initial target
// bitrate. Since we didn't advance the clock the adjuster never updated.
target_bitrate_bps = (1 + delta_pct) * target_bitrate_bps;
adjuster_.SetTargetBitrateBps(target_bitrate_bps);
EXPECT_EQ(target_bitrate_bps, adjuster_.GetAdjustedBitrateBps());
}
} // namespace webrtc