It's just a container for two IFChannelBuffers, and doesn't earn its keep. The main problem is that the number of methods it needs that just forward calls to either of its two IFChannelBuffers was already large, and was about to grow. R=aluebs@webrtc.org, minyue@webrtc.org Review URL: https://webrtc-codereview.appspot.com/16919004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@6717 4adac7df-926f-26a2-2b94-8c16560cd09d
453 lines
14 KiB
C++
453 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/audio_processing/audio_buffer.h"
|
|
|
|
#include "webrtc/common_audio/include/audio_util.h"
|
|
#include "webrtc/common_audio/resampler/push_sinc_resampler.h"
|
|
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
enum {
|
|
kSamplesPer8kHzChannel = 80,
|
|
kSamplesPer16kHzChannel = 160,
|
|
kSamplesPer32kHzChannel = 320
|
|
};
|
|
|
|
bool HasKeyboardChannel(AudioProcessing::ChannelLayout layout) {
|
|
switch (layout) {
|
|
case AudioProcessing::kMono:
|
|
case AudioProcessing::kStereo:
|
|
return false;
|
|
case AudioProcessing::kMonoAndKeyboard:
|
|
case AudioProcessing::kStereoAndKeyboard:
|
|
return true;
|
|
}
|
|
assert(false);
|
|
return false;
|
|
}
|
|
|
|
int KeyboardChannelIndex(AudioProcessing::ChannelLayout layout) {
|
|
switch (layout) {
|
|
case AudioProcessing::kMono:
|
|
case AudioProcessing::kStereo:
|
|
assert(false);
|
|
return -1;
|
|
case AudioProcessing::kMonoAndKeyboard:
|
|
return 1;
|
|
case AudioProcessing::kStereoAndKeyboard:
|
|
return 2;
|
|
}
|
|
assert(false);
|
|
return -1;
|
|
}
|
|
|
|
void StereoToMono(const float* left, const float* right, float* out,
|
|
int samples_per_channel) {
|
|
for (int i = 0; i < samples_per_channel; ++i) {
|
|
out[i] = (left[i] + right[i]) / 2;
|
|
}
|
|
}
|
|
|
|
void StereoToMono(const int16_t* left, const int16_t* right, int16_t* out,
|
|
int samples_per_channel) {
|
|
for (int i = 0; i < samples_per_channel; ++i) {
|
|
out[i] = (left[i] + right[i]) >> 1;
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// One int16_t and one float ChannelBuffer that are kept in sync. The sync is
|
|
// broken when someone requests write access to either ChannelBuffer, and
|
|
// reestablished when someone requests the outdated ChannelBuffer. It is
|
|
// therefore safe to use the return value of ibuf() and fbuf() until the next
|
|
// call to the other method.
|
|
class IFChannelBuffer {
|
|
public:
|
|
IFChannelBuffer(int samples_per_channel, int num_channels)
|
|
: ivalid_(true),
|
|
ibuf_(samples_per_channel, num_channels),
|
|
fvalid_(true),
|
|
fbuf_(samples_per_channel, num_channels) {}
|
|
|
|
ChannelBuffer<int16_t>* ibuf() {
|
|
RefreshI();
|
|
fvalid_ = false;
|
|
return &ibuf_;
|
|
}
|
|
|
|
ChannelBuffer<float>* fbuf() {
|
|
RefreshF();
|
|
ivalid_ = false;
|
|
return &fbuf_;
|
|
}
|
|
|
|
private:
|
|
void RefreshF() {
|
|
if (!fvalid_) {
|
|
assert(ivalid_);
|
|
const int16_t* const int_data = ibuf_.data();
|
|
float* const float_data = fbuf_.data();
|
|
const int length = fbuf_.length();
|
|
for (int i = 0; i < length; ++i)
|
|
float_data[i] = int_data[i];
|
|
fvalid_ = true;
|
|
}
|
|
}
|
|
|
|
void RefreshI() {
|
|
if (!ivalid_) {
|
|
assert(fvalid_);
|
|
const float* const float_data = fbuf_.data();
|
|
int16_t* const int_data = ibuf_.data();
|
|
const int length = ibuf_.length();
|
|
for (int i = 0; i < length; ++i)
|
|
int_data[i] = WEBRTC_SPL_SAT(std::numeric_limits<int16_t>::max(),
|
|
float_data[i],
|
|
std::numeric_limits<int16_t>::min());
|
|
ivalid_ = true;
|
|
}
|
|
}
|
|
|
|
bool ivalid_;
|
|
ChannelBuffer<int16_t> ibuf_;
|
|
bool fvalid_;
|
|
ChannelBuffer<float> fbuf_;
|
|
};
|
|
|
|
AudioBuffer::AudioBuffer(int input_samples_per_channel,
|
|
int num_input_channels,
|
|
int process_samples_per_channel,
|
|
int num_process_channels,
|
|
int output_samples_per_channel)
|
|
: input_samples_per_channel_(input_samples_per_channel),
|
|
num_input_channels_(num_input_channels),
|
|
proc_samples_per_channel_(process_samples_per_channel),
|
|
num_proc_channels_(num_process_channels),
|
|
output_samples_per_channel_(output_samples_per_channel),
|
|
samples_per_split_channel_(proc_samples_per_channel_),
|
|
mixed_low_pass_valid_(false),
|
|
reference_copied_(false),
|
|
activity_(AudioFrame::kVadUnknown),
|
|
keyboard_data_(NULL),
|
|
channels_(new IFChannelBuffer(proc_samples_per_channel_,
|
|
num_proc_channels_)) {
|
|
assert(input_samples_per_channel_ > 0);
|
|
assert(proc_samples_per_channel_ > 0);
|
|
assert(output_samples_per_channel_ > 0);
|
|
assert(num_input_channels_ > 0 && num_input_channels_ <= 2);
|
|
assert(num_proc_channels_ <= num_input_channels);
|
|
|
|
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
|
|
input_buffer_.reset(new ChannelBuffer<float>(input_samples_per_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_ ||
|
|
output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
// Create an intermediate buffer for resampling.
|
|
process_buffer_.reset(new ChannelBuffer<float>(proc_samples_per_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_) {
|
|
input_resamplers_.reserve(num_proc_channels_);
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
input_resamplers_.push_back(
|
|
new PushSincResampler(input_samples_per_channel_,
|
|
proc_samples_per_channel_));
|
|
}
|
|
}
|
|
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
output_resamplers_.reserve(num_proc_channels_);
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
output_resamplers_.push_back(
|
|
new PushSincResampler(proc_samples_per_channel_,
|
|
output_samples_per_channel_));
|
|
}
|
|
}
|
|
|
|
if (proc_samples_per_channel_ == kSamplesPer32kHzChannel) {
|
|
samples_per_split_channel_ = kSamplesPer16kHzChannel;
|
|
split_channels_low_.reset(new IFChannelBuffer(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
split_channels_high_.reset(new IFChannelBuffer(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
filter_states_.reset(new SplitFilterStates[num_proc_channels_]);
|
|
}
|
|
}
|
|
|
|
AudioBuffer::~AudioBuffer() {}
|
|
|
|
void AudioBuffer::CopyFrom(const float* const* data,
|
|
int samples_per_channel,
|
|
AudioProcessing::ChannelLayout layout) {
|
|
assert(samples_per_channel == input_samples_per_channel_);
|
|
assert(ChannelsFromLayout(layout) == num_input_channels_);
|
|
InitForNewData();
|
|
|
|
if (HasKeyboardChannel(layout)) {
|
|
keyboard_data_ = data[KeyboardChannelIndex(layout)];
|
|
}
|
|
|
|
// Downmix.
|
|
const float* const* data_ptr = data;
|
|
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
|
|
StereoToMono(data[0],
|
|
data[1],
|
|
input_buffer_->channel(0),
|
|
input_samples_per_channel_);
|
|
data_ptr = input_buffer_->channels();
|
|
}
|
|
|
|
// Resample.
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_) {
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
input_resamplers_[i]->Resample(data_ptr[i],
|
|
input_samples_per_channel_,
|
|
process_buffer_->channel(i),
|
|
proc_samples_per_channel_);
|
|
}
|
|
data_ptr = process_buffer_->channels();
|
|
}
|
|
|
|
// Convert to int16.
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
ScaleAndRoundToInt16(data_ptr[i], proc_samples_per_channel_,
|
|
channels_->ibuf()->channel(i));
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::CopyTo(int samples_per_channel,
|
|
AudioProcessing::ChannelLayout layout,
|
|
float* const* data) {
|
|
assert(samples_per_channel == output_samples_per_channel_);
|
|
assert(ChannelsFromLayout(layout) == num_proc_channels_);
|
|
|
|
// Convert to float.
|
|
float* const* data_ptr = data;
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
// Convert to an intermediate buffer for subsequent resampling.
|
|
data_ptr = process_buffer_->channels();
|
|
}
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
ScaleToFloat(channels_->ibuf()->channel(i),
|
|
proc_samples_per_channel_,
|
|
data_ptr[i]);
|
|
}
|
|
|
|
// Resample.
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
output_resamplers_[i]->Resample(data_ptr[i],
|
|
proc_samples_per_channel_,
|
|
data[i],
|
|
output_samples_per_channel_);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::InitForNewData() {
|
|
keyboard_data_ = NULL;
|
|
mixed_low_pass_valid_ = false;
|
|
reference_copied_ = false;
|
|
activity_ = AudioFrame::kVadUnknown;
|
|
}
|
|
|
|
const int16_t* AudioBuffer::data(int channel) const {
|
|
return channels_->ibuf()->channel(channel);
|
|
}
|
|
|
|
int16_t* AudioBuffer::data(int channel) {
|
|
mixed_low_pass_valid_ = false;
|
|
const AudioBuffer* t = this;
|
|
return const_cast<int16_t*>(t->data(channel));
|
|
}
|
|
|
|
const float* AudioBuffer::data_f(int channel) const {
|
|
return channels_->fbuf()->channel(channel);
|
|
}
|
|
|
|
float* AudioBuffer::data_f(int channel) {
|
|
mixed_low_pass_valid_ = false;
|
|
const AudioBuffer* t = this;
|
|
return const_cast<float*>(t->data_f(channel));
|
|
}
|
|
|
|
const int16_t* AudioBuffer::low_pass_split_data(int channel) const {
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->ibuf()->channel(channel)
|
|
: data(channel);
|
|
}
|
|
|
|
int16_t* AudioBuffer::low_pass_split_data(int channel) {
|
|
mixed_low_pass_valid_ = false;
|
|
const AudioBuffer* t = this;
|
|
return const_cast<int16_t*>(t->low_pass_split_data(channel));
|
|
}
|
|
|
|
const float* AudioBuffer::low_pass_split_data_f(int channel) const {
|
|
return split_channels_low_.get()
|
|
? split_channels_low_->fbuf()->channel(channel)
|
|
: data_f(channel);
|
|
}
|
|
|
|
float* AudioBuffer::low_pass_split_data_f(int channel) {
|
|
mixed_low_pass_valid_ = false;
|
|
const AudioBuffer* t = this;
|
|
return const_cast<float*>(t->low_pass_split_data_f(channel));
|
|
}
|
|
|
|
const int16_t* AudioBuffer::high_pass_split_data(int channel) const {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->ibuf()->channel(channel)
|
|
: NULL;
|
|
}
|
|
|
|
int16_t* AudioBuffer::high_pass_split_data(int channel) {
|
|
const AudioBuffer* t = this;
|
|
return const_cast<int16_t*>(t->high_pass_split_data(channel));
|
|
}
|
|
|
|
const float* AudioBuffer::high_pass_split_data_f(int channel) const {
|
|
return split_channels_high_.get()
|
|
? split_channels_high_->fbuf()->channel(channel)
|
|
: NULL;
|
|
}
|
|
|
|
float* AudioBuffer::high_pass_split_data_f(int channel) {
|
|
const AudioBuffer* t = this;
|
|
return const_cast<float*>(t->high_pass_split_data_f(channel));
|
|
}
|
|
|
|
const int16_t* AudioBuffer::mixed_low_pass_data() {
|
|
// Currently only mixing stereo to mono is supported.
|
|
assert(num_proc_channels_ == 1 || num_proc_channels_ == 2);
|
|
|
|
if (num_proc_channels_ == 1) {
|
|
return low_pass_split_data(0);
|
|
}
|
|
|
|
if (!mixed_low_pass_valid_) {
|
|
if (!mixed_low_pass_channels_.get()) {
|
|
mixed_low_pass_channels_.reset(
|
|
new ChannelBuffer<int16_t>(samples_per_split_channel_, 1));
|
|
}
|
|
StereoToMono(low_pass_split_data(0),
|
|
low_pass_split_data(1),
|
|
mixed_low_pass_channels_->data(),
|
|
samples_per_split_channel_);
|
|
mixed_low_pass_valid_ = true;
|
|
}
|
|
return mixed_low_pass_channels_->data();
|
|
}
|
|
|
|
const int16_t* AudioBuffer::low_pass_reference(int channel) const {
|
|
if (!reference_copied_) {
|
|
return NULL;
|
|
}
|
|
|
|
return low_pass_reference_channels_->channel(channel);
|
|
}
|
|
|
|
const float* AudioBuffer::keyboard_data() const {
|
|
return keyboard_data_;
|
|
}
|
|
|
|
SplitFilterStates* AudioBuffer::filter_states(int channel) {
|
|
assert(channel >= 0 && channel < num_proc_channels_);
|
|
return &filter_states_[channel];
|
|
}
|
|
|
|
void AudioBuffer::set_activity(AudioFrame::VADActivity activity) {
|
|
activity_ = activity;
|
|
}
|
|
|
|
AudioFrame::VADActivity AudioBuffer::activity() const {
|
|
return activity_;
|
|
}
|
|
|
|
int AudioBuffer::num_channels() const {
|
|
return num_proc_channels_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_channel() const {
|
|
return proc_samples_per_channel_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_split_channel() const {
|
|
return samples_per_split_channel_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_keyboard_channel() const {
|
|
// We don't resample the keyboard channel.
|
|
return input_samples_per_channel_;
|
|
}
|
|
|
|
// TODO(andrew): Do deinterleaving and mixing in one step?
|
|
void AudioBuffer::DeinterleaveFrom(AudioFrame* frame) {
|
|
assert(proc_samples_per_channel_ == input_samples_per_channel_);
|
|
assert(num_proc_channels_ == num_input_channels_);
|
|
assert(frame->num_channels_ == num_proc_channels_);
|
|
assert(frame->samples_per_channel_ == proc_samples_per_channel_);
|
|
InitForNewData();
|
|
activity_ = frame->vad_activity_;
|
|
|
|
int16_t* interleaved = frame->data_;
|
|
for (int i = 0; i < num_proc_channels_; i++) {
|
|
int16_t* deinterleaved = channels_->ibuf()->channel(i);
|
|
int interleaved_idx = i;
|
|
for (int j = 0; j < proc_samples_per_channel_; j++) {
|
|
deinterleaved[j] = interleaved[interleaved_idx];
|
|
interleaved_idx += num_proc_channels_;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::InterleaveTo(AudioFrame* frame, bool data_changed) const {
|
|
assert(proc_samples_per_channel_ == output_samples_per_channel_);
|
|
assert(num_proc_channels_ == num_input_channels_);
|
|
assert(frame->num_channels_ == num_proc_channels_);
|
|
assert(frame->samples_per_channel_ == proc_samples_per_channel_);
|
|
frame->vad_activity_ = activity_;
|
|
|
|
if (!data_changed) {
|
|
return;
|
|
}
|
|
|
|
int16_t* interleaved = frame->data_;
|
|
for (int i = 0; i < num_proc_channels_; i++) {
|
|
int16_t* deinterleaved = channels_->ibuf()->channel(i);
|
|
int interleaved_idx = i;
|
|
for (int j = 0; j < proc_samples_per_channel_; j++) {
|
|
interleaved[interleaved_idx] = deinterleaved[j];
|
|
interleaved_idx += num_proc_channels_;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::CopyLowPassToReference() {
|
|
reference_copied_ = true;
|
|
if (!low_pass_reference_channels_.get()) {
|
|
low_pass_reference_channels_.reset(
|
|
new ChannelBuffer<int16_t>(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
for (int i = 0; i < num_proc_channels_; i++) {
|
|
low_pass_reference_channels_->CopyFrom(low_pass_split_data(i), i);
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|