SvcRateAllocator assumed no temporal layering for screencast content and allocated all bitrate to base temporal layer. Now it distributes bitrate to spatial and temporal layers (if configured) no matter of content type. Bug: webrtc:351644568, b/364190191 Change-Id: I445f0157d2c14cad033648693dc0564ae97023e9 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/362080 Commit-Queue: Sergey Silkin <ssilkin@webrtc.org> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Cr-Commit-Position: refs/heads/main@{#42979}
463 lines
17 KiB
C++
463 lines
17 KiB
C++
/*
|
|
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/video_coding/svc/svc_rate_allocator.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <numeric>
|
|
#include <vector>
|
|
|
|
#include "absl/container/inlined_vector.h"
|
|
#include "modules/video_coding/svc/create_scalability_structure.h"
|
|
#include "rtc_base/checks.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
constexpr float kSpatialLayeringRateScalingFactor = 0.55f;
|
|
constexpr float kTemporalLayeringRateScalingFactor = 0.55f;
|
|
|
|
struct ActiveSpatialLayers {
|
|
size_t first = 0;
|
|
size_t num = 0;
|
|
};
|
|
|
|
ActiveSpatialLayers GetActiveSpatialLayers(const VideoCodec& codec,
|
|
size_t num_spatial_layers) {
|
|
ActiveSpatialLayers active;
|
|
for (active.first = 0; active.first < num_spatial_layers; ++active.first) {
|
|
if (codec.spatialLayers[active.first].active) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
size_t last_active_layer = active.first;
|
|
for (; last_active_layer < num_spatial_layers; ++last_active_layer) {
|
|
if (!codec.spatialLayers[last_active_layer].active) {
|
|
break;
|
|
}
|
|
}
|
|
active.num = last_active_layer - active.first;
|
|
|
|
return active;
|
|
}
|
|
|
|
std::vector<DataRate> AdjustAndVerify(
|
|
const VideoCodec& codec,
|
|
size_t first_active_layer,
|
|
const std::vector<DataRate>& spatial_layer_rates) {
|
|
std::vector<DataRate> adjusted_spatial_layer_rates;
|
|
// Keep track of rate that couldn't be applied to the previous layer due to
|
|
// max bitrate constraint, try to pass it forward to the next one.
|
|
DataRate excess_rate = DataRate::Zero();
|
|
for (size_t sl_idx = 0; sl_idx < spatial_layer_rates.size(); ++sl_idx) {
|
|
DataRate min_rate = DataRate::KilobitsPerSec(
|
|
codec.spatialLayers[first_active_layer + sl_idx].minBitrate);
|
|
DataRate max_rate = DataRate::KilobitsPerSec(
|
|
codec.spatialLayers[first_active_layer + sl_idx].maxBitrate);
|
|
|
|
DataRate layer_rate = spatial_layer_rates[sl_idx] + excess_rate;
|
|
if (layer_rate < min_rate) {
|
|
// Not enough rate to reach min bitrate for desired number of layers,
|
|
// abort allocation.
|
|
if (spatial_layer_rates.size() == 1) {
|
|
return spatial_layer_rates;
|
|
}
|
|
return adjusted_spatial_layer_rates;
|
|
}
|
|
|
|
if (layer_rate <= max_rate) {
|
|
excess_rate = DataRate::Zero();
|
|
adjusted_spatial_layer_rates.push_back(layer_rate);
|
|
} else {
|
|
excess_rate = layer_rate - max_rate;
|
|
adjusted_spatial_layer_rates.push_back(max_rate);
|
|
}
|
|
}
|
|
|
|
return adjusted_spatial_layer_rates;
|
|
}
|
|
|
|
static std::vector<DataRate> SplitBitrate(size_t num_layers,
|
|
DataRate total_bitrate,
|
|
float rate_scaling_factor) {
|
|
std::vector<DataRate> bitrates;
|
|
|
|
double denominator = 0.0;
|
|
for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
|
|
denominator += std::pow(rate_scaling_factor, layer_idx);
|
|
}
|
|
|
|
double numerator = std::pow(rate_scaling_factor, num_layers - 1);
|
|
for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
|
|
bitrates.push_back(numerator * total_bitrate / denominator);
|
|
numerator /= rate_scaling_factor;
|
|
}
|
|
|
|
const DataRate sum =
|
|
std::accumulate(bitrates.begin(), bitrates.end(), DataRate::Zero());
|
|
|
|
// Keep the sum of split bitrates equal to the total bitrate by adding or
|
|
// subtracting bits, which were lost due to rounding, to the latest layer.
|
|
if (total_bitrate > sum) {
|
|
bitrates.back() += total_bitrate - sum;
|
|
} else if (total_bitrate < sum) {
|
|
bitrates.back() -= sum - total_bitrate;
|
|
}
|
|
|
|
return bitrates;
|
|
}
|
|
|
|
VideoBitrateAllocation DistributeAllocationToTemporalLayers(
|
|
std::vector<DataRate> spatial_layer_birates,
|
|
size_t first_active_layer,
|
|
size_t num_temporal_layers) {
|
|
// Distribute rate across temporal layers. Allocate more bits to lower
|
|
// layers since they are used for prediction of higher layers and their
|
|
// references are far apart.
|
|
VideoBitrateAllocation bitrate_allocation;
|
|
for (size_t sl_idx = 0; sl_idx < spatial_layer_birates.size(); ++sl_idx) {
|
|
std::vector<DataRate> temporal_layer_bitrates =
|
|
SplitBitrate(num_temporal_layers, spatial_layer_birates[sl_idx],
|
|
kTemporalLayeringRateScalingFactor);
|
|
|
|
if (num_temporal_layers == 1) {
|
|
bitrate_allocation.SetBitrate(sl_idx + first_active_layer, 0,
|
|
temporal_layer_bitrates[0].bps());
|
|
} else if (num_temporal_layers == 2) {
|
|
bitrate_allocation.SetBitrate(sl_idx + first_active_layer, 0,
|
|
temporal_layer_bitrates[1].bps());
|
|
bitrate_allocation.SetBitrate(sl_idx + first_active_layer, 1,
|
|
temporal_layer_bitrates[0].bps());
|
|
} else {
|
|
RTC_CHECK_EQ(num_temporal_layers, 3);
|
|
// In case of three temporal layers the high layer has two frames and the
|
|
// middle layer has one frame within GOP (in between two consecutive low
|
|
// layer frames). Thus high layer requires more bits (comparing pure
|
|
// bitrate of layer, excluding bitrate of base layers) to keep quality on
|
|
// par with lower layers.
|
|
bitrate_allocation.SetBitrate(sl_idx + first_active_layer, 0,
|
|
temporal_layer_bitrates[2].bps());
|
|
bitrate_allocation.SetBitrate(sl_idx + first_active_layer, 1,
|
|
temporal_layer_bitrates[0].bps());
|
|
bitrate_allocation.SetBitrate(sl_idx + first_active_layer, 2,
|
|
temporal_layer_bitrates[1].bps());
|
|
}
|
|
}
|
|
|
|
return bitrate_allocation;
|
|
}
|
|
|
|
// Returns the minimum bitrate needed for `num_active_layers` spatial layers to
|
|
// become active using the configuration specified by `codec`.
|
|
DataRate FindLayerTogglingThreshold(const VideoCodec& codec,
|
|
size_t first_active_layer,
|
|
size_t num_active_layers) {
|
|
if (num_active_layers == 1) {
|
|
return DataRate::KilobitsPerSec(codec.spatialLayers[0].minBitrate);
|
|
}
|
|
|
|
if (codec.mode == VideoCodecMode::kRealtimeVideo) {
|
|
DataRate lower_bound = DataRate::Zero();
|
|
DataRate upper_bound = DataRate::Zero();
|
|
if (num_active_layers > 1) {
|
|
for (size_t i = 0; i < num_active_layers - 1; ++i) {
|
|
lower_bound += DataRate::KilobitsPerSec(
|
|
codec.spatialLayers[first_active_layer + i].minBitrate);
|
|
upper_bound += DataRate::KilobitsPerSec(
|
|
codec.spatialLayers[first_active_layer + i].maxBitrate);
|
|
}
|
|
}
|
|
upper_bound += DataRate::KilobitsPerSec(
|
|
codec.spatialLayers[first_active_layer + num_active_layers - 1]
|
|
.minBitrate);
|
|
|
|
// Do a binary search until upper and lower bound is the highest bitrate for
|
|
// `num_active_layers` - 1 layers and lowest bitrate for `num_active_layers`
|
|
// layers respectively.
|
|
while (upper_bound - lower_bound > DataRate::BitsPerSec(1)) {
|
|
DataRate try_rate = (lower_bound + upper_bound) / 2;
|
|
if (AdjustAndVerify(codec, first_active_layer,
|
|
SplitBitrate(num_active_layers, try_rate,
|
|
kSpatialLayeringRateScalingFactor))
|
|
.size() == num_active_layers) {
|
|
upper_bound = try_rate;
|
|
} else {
|
|
lower_bound = try_rate;
|
|
}
|
|
}
|
|
return upper_bound;
|
|
} else {
|
|
DataRate toggling_rate = DataRate::Zero();
|
|
for (size_t i = 0; i < num_active_layers - 1; ++i) {
|
|
toggling_rate += DataRate::KilobitsPerSec(
|
|
codec.spatialLayers[first_active_layer + i].targetBitrate);
|
|
}
|
|
toggling_rate += DataRate::KilobitsPerSec(
|
|
codec.spatialLayers[first_active_layer + num_active_layers - 1]
|
|
.minBitrate);
|
|
return toggling_rate;
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
SvcRateAllocator::NumLayers SvcRateAllocator::GetNumLayers(
|
|
const VideoCodec& codec) {
|
|
NumLayers layers;
|
|
if (std::optional<ScalabilityMode> scalability_mode =
|
|
codec.GetScalabilityMode();
|
|
scalability_mode.has_value()) {
|
|
if (auto structure = CreateScalabilityStructure(*scalability_mode)) {
|
|
ScalableVideoController::StreamLayersConfig config =
|
|
structure->StreamConfig();
|
|
layers.spatial = config.num_spatial_layers;
|
|
layers.temporal = config.num_temporal_layers;
|
|
return layers;
|
|
}
|
|
}
|
|
if (codec.codecType == kVideoCodecVP9) {
|
|
layers.spatial = codec.VP9().numberOfSpatialLayers;
|
|
layers.temporal = codec.VP9().numberOfTemporalLayers;
|
|
return layers;
|
|
}
|
|
layers.spatial = 1;
|
|
layers.temporal = 1;
|
|
return layers;
|
|
}
|
|
|
|
SvcRateAllocator::SvcRateAllocator(const VideoCodec& codec)
|
|
: codec_(codec),
|
|
num_layers_(GetNumLayers(codec)),
|
|
experiment_settings_(StableTargetRateExperiment::ParseFromFieldTrials()),
|
|
cumulative_layer_start_bitrates_(GetLayerStartBitrates(codec)),
|
|
last_active_layer_count_(0) {
|
|
RTC_DCHECK_GT(num_layers_.spatial, 0);
|
|
RTC_DCHECK_LE(num_layers_.spatial, kMaxSpatialLayers);
|
|
RTC_DCHECK_GT(num_layers_.temporal, 0);
|
|
RTC_DCHECK_LE(num_layers_.temporal, 3);
|
|
for (size_t layer_idx = 0; layer_idx < num_layers_.spatial; ++layer_idx) {
|
|
// Verify min <= target <= max.
|
|
if (codec.spatialLayers[layer_idx].active) {
|
|
RTC_DCHECK_GT(codec.spatialLayers[layer_idx].maxBitrate, 0);
|
|
RTC_DCHECK_GE(codec.spatialLayers[layer_idx].maxBitrate,
|
|
codec.spatialLayers[layer_idx].minBitrate);
|
|
RTC_DCHECK_GE(codec.spatialLayers[layer_idx].targetBitrate,
|
|
codec.spatialLayers[layer_idx].minBitrate);
|
|
RTC_DCHECK_GE(codec.spatialLayers[layer_idx].maxBitrate,
|
|
codec.spatialLayers[layer_idx].targetBitrate);
|
|
}
|
|
}
|
|
}
|
|
|
|
VideoBitrateAllocation SvcRateAllocator::Allocate(
|
|
VideoBitrateAllocationParameters parameters) {
|
|
DataRate total_bitrate = parameters.total_bitrate;
|
|
if (codec_.maxBitrate != 0) {
|
|
total_bitrate =
|
|
std::min(total_bitrate, DataRate::KilobitsPerSec(codec_.maxBitrate));
|
|
}
|
|
|
|
if (codec_.spatialLayers[0].targetBitrate == 0) {
|
|
// Delegate rate distribution to encoder wrapper if bitrate thresholds
|
|
// are not set.
|
|
VideoBitrateAllocation bitrate_allocation;
|
|
bitrate_allocation.SetBitrate(0, 0, total_bitrate.bps());
|
|
return bitrate_allocation;
|
|
}
|
|
|
|
const ActiveSpatialLayers active_layers =
|
|
GetActiveSpatialLayers(codec_, num_layers_.spatial);
|
|
size_t num_spatial_layers = active_layers.num;
|
|
|
|
if (num_spatial_layers == 0) {
|
|
return VideoBitrateAllocation(); // All layers are deactivated.
|
|
}
|
|
|
|
// Figure out how many spatial layers should be active.
|
|
if (experiment_settings_.IsEnabled() &&
|
|
parameters.stable_bitrate > DataRate::Zero()) {
|
|
double hysteresis_factor;
|
|
if (codec_.mode == VideoCodecMode::kScreensharing) {
|
|
hysteresis_factor = experiment_settings_.GetScreenshareHysteresisFactor();
|
|
} else {
|
|
hysteresis_factor = experiment_settings_.GetVideoHysteresisFactor();
|
|
}
|
|
|
|
DataRate stable_rate = std::min(total_bitrate, parameters.stable_bitrate);
|
|
// First check if bitrate has grown large enough to enable new layers.
|
|
size_t num_enabled_with_hysteresis =
|
|
FindNumEnabledLayers(stable_rate / hysteresis_factor);
|
|
if (num_enabled_with_hysteresis >= last_active_layer_count_) {
|
|
num_spatial_layers = num_enabled_with_hysteresis;
|
|
} else {
|
|
// We could not enable new layers, check if any should be disabled.
|
|
num_spatial_layers =
|
|
std::min(last_active_layer_count_, FindNumEnabledLayers(stable_rate));
|
|
}
|
|
} else {
|
|
num_spatial_layers = FindNumEnabledLayers(total_bitrate);
|
|
}
|
|
last_active_layer_count_ = num_spatial_layers;
|
|
|
|
std::vector<DataRate> spatial_layer_bitrates;
|
|
if (codec_.mode == VideoCodecMode::kRealtimeVideo) {
|
|
spatial_layer_bitrates = DistributeAllocationToSpatialLayersNormalVideo(
|
|
total_bitrate, active_layers.first, num_spatial_layers);
|
|
} else {
|
|
spatial_layer_bitrates = DistributeAllocationToSpatialLayersScreenSharing(
|
|
total_bitrate, active_layers.first, num_spatial_layers);
|
|
}
|
|
|
|
VideoBitrateAllocation allocation = DistributeAllocationToTemporalLayers(
|
|
spatial_layer_bitrates, active_layers.first, num_layers_.temporal);
|
|
|
|
allocation.set_bw_limited(num_spatial_layers < active_layers.num);
|
|
return allocation;
|
|
}
|
|
|
|
std::vector<DataRate>
|
|
SvcRateAllocator::DistributeAllocationToSpatialLayersNormalVideo(
|
|
DataRate total_bitrate,
|
|
size_t first_active_layer,
|
|
size_t num_spatial_layers) const {
|
|
std::vector<DataRate> spatial_layer_rates;
|
|
if (num_spatial_layers == 0) {
|
|
// Not enough rate for even the base layer. Force allocation at the total
|
|
// bitrate anyway.
|
|
num_spatial_layers = 1;
|
|
spatial_layer_rates.push_back(total_bitrate);
|
|
return spatial_layer_rates;
|
|
}
|
|
|
|
spatial_layer_rates =
|
|
AdjustAndVerify(codec_, first_active_layer,
|
|
SplitBitrate(num_spatial_layers, total_bitrate,
|
|
kSpatialLayeringRateScalingFactor));
|
|
RTC_DCHECK_EQ(spatial_layer_rates.size(), num_spatial_layers);
|
|
return spatial_layer_rates;
|
|
}
|
|
|
|
// Bit-rate is allocated in such a way, that the highest enabled layer will have
|
|
// between min and max bitrate, and all others will have exactly target
|
|
// bit-rate allocated.
|
|
std::vector<DataRate>
|
|
SvcRateAllocator::DistributeAllocationToSpatialLayersScreenSharing(
|
|
DataRate total_bitrate,
|
|
size_t first_active_layer,
|
|
size_t num_spatial_layers) const {
|
|
std::vector<DataRate> spatial_layer_rates;
|
|
if (num_spatial_layers == 0 ||
|
|
total_bitrate <
|
|
DataRate::KilobitsPerSec(
|
|
codec_.spatialLayers[first_active_layer].minBitrate)) {
|
|
// Always enable at least one layer.
|
|
spatial_layer_rates.push_back(total_bitrate);
|
|
return spatial_layer_rates;
|
|
}
|
|
|
|
DataRate allocated_rate = DataRate::Zero();
|
|
DataRate top_layer_rate = DataRate::Zero();
|
|
size_t sl_idx;
|
|
for (sl_idx = first_active_layer;
|
|
sl_idx < first_active_layer + num_spatial_layers; ++sl_idx) {
|
|
const DataRate min_rate =
|
|
DataRate::KilobitsPerSec(codec_.spatialLayers[sl_idx].minBitrate);
|
|
const DataRate target_rate =
|
|
DataRate::KilobitsPerSec(codec_.spatialLayers[sl_idx].targetBitrate);
|
|
|
|
if (allocated_rate + min_rate > total_bitrate) {
|
|
// Use stable rate to determine if layer should be enabled.
|
|
break;
|
|
}
|
|
|
|
top_layer_rate = std::min(target_rate, total_bitrate - allocated_rate);
|
|
spatial_layer_rates.push_back(top_layer_rate);
|
|
allocated_rate += top_layer_rate;
|
|
}
|
|
|
|
if (sl_idx > 0 && total_bitrate - allocated_rate > DataRate::Zero()) {
|
|
// Add leftover to the last allocated layer.
|
|
top_layer_rate = std::min(
|
|
top_layer_rate + (total_bitrate - allocated_rate),
|
|
DataRate::KilobitsPerSec(codec_.spatialLayers[sl_idx - 1].maxBitrate));
|
|
spatial_layer_rates.back() = top_layer_rate;
|
|
}
|
|
|
|
return spatial_layer_rates;
|
|
}
|
|
|
|
size_t SvcRateAllocator::FindNumEnabledLayers(DataRate target_rate) const {
|
|
if (cumulative_layer_start_bitrates_.empty()) {
|
|
return 0;
|
|
}
|
|
|
|
size_t num_enabled_layers = 0;
|
|
for (DataRate start_rate : cumulative_layer_start_bitrates_) {
|
|
// First layer is always enabled.
|
|
if (num_enabled_layers == 0 || start_rate <= target_rate) {
|
|
++num_enabled_layers;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return num_enabled_layers;
|
|
}
|
|
|
|
DataRate SvcRateAllocator::GetMaxBitrate(const VideoCodec& codec) {
|
|
const NumLayers num_layers = GetNumLayers(codec);
|
|
const ActiveSpatialLayers active_layers =
|
|
GetActiveSpatialLayers(codec, num_layers.spatial);
|
|
|
|
DataRate max_bitrate = DataRate::Zero();
|
|
for (size_t sl_idx = 0; sl_idx < active_layers.num; ++sl_idx) {
|
|
max_bitrate += DataRate::KilobitsPerSec(
|
|
codec.spatialLayers[active_layers.first + sl_idx].maxBitrate);
|
|
}
|
|
|
|
if (codec.maxBitrate != 0) {
|
|
max_bitrate =
|
|
std::min(max_bitrate, DataRate::KilobitsPerSec(codec.maxBitrate));
|
|
}
|
|
|
|
return max_bitrate;
|
|
}
|
|
|
|
DataRate SvcRateAllocator::GetPaddingBitrate(const VideoCodec& codec) {
|
|
auto start_bitrate = GetLayerStartBitrates(codec);
|
|
if (start_bitrate.empty()) {
|
|
return DataRate::Zero(); // All layers are deactivated.
|
|
}
|
|
|
|
return start_bitrate.back();
|
|
}
|
|
|
|
absl::InlinedVector<DataRate, kMaxSpatialLayers>
|
|
SvcRateAllocator::GetLayerStartBitrates(const VideoCodec& codec) {
|
|
absl::InlinedVector<DataRate, kMaxSpatialLayers> start_bitrates;
|
|
const NumLayers num_layers = GetNumLayers(codec);
|
|
const ActiveSpatialLayers active_layers =
|
|
GetActiveSpatialLayers(codec, num_layers.spatial);
|
|
DataRate last_rate = DataRate::Zero();
|
|
for (size_t i = 1; i <= active_layers.num; ++i) {
|
|
DataRate layer_toggling_rate =
|
|
FindLayerTogglingThreshold(codec, active_layers.first, i);
|
|
start_bitrates.push_back(layer_toggling_rate);
|
|
RTC_DCHECK_LE(last_rate, layer_toggling_rate);
|
|
last_rate = layer_toggling_rate;
|
|
}
|
|
return start_bitrates;
|
|
}
|
|
|
|
} // namespace webrtc
|