webrtc_m130/test/fake_encoder.cc
Niels Möller 2377588c82 Add accessor methods for RTP timestamp of EncodedImage.
Intention is to make the member private, but downstream callers
must be updated to use the accessor methods first.

Bug: webrtc:9378
Change-Id: I3495bd8d545b7234fbea10abfd14f082caa420b6
Reviewed-on: https://webrtc-review.googlesource.com/82160
Reviewed-by: Magnus Jedvert <magjed@webrtc.org>
Reviewed-by: Erik Språng <sprang@webrtc.org>
Reviewed-by: Sebastian Jansson <srte@webrtc.org>
Reviewed-by: Philip Eliasson <philipel@webrtc.org>
Commit-Queue: Niels Moller <nisse@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#24352}
2018-08-21 09:15:51 +00:00

381 lines
13 KiB
C++

/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "test/fake_encoder.h"
#include <string.h>
#include <algorithm>
#include <memory>
#include "common_types.h" // NOLINT(build/include)
#include "modules/video_coding/include/video_codec_interface.h"
#include "rtc_base/checks.h"
#include "system_wrappers/include/sleep.h"
#include "test/gtest.h"
namespace webrtc {
namespace test {
const int kKeyframeSizeFactor = 10;
FakeEncoder::FakeEncoder(Clock* clock)
: clock_(clock),
callback_(nullptr),
configured_input_framerate_(-1),
max_target_bitrate_kbps_(-1),
pending_keyframe_(true),
debt_bytes_(0) {
// Generate some arbitrary not-all-zero data
for (size_t i = 0; i < sizeof(encoded_buffer_); ++i) {
encoded_buffer_[i] = static_cast<uint8_t>(i);
}
}
void FakeEncoder::SetMaxBitrate(int max_kbps) {
RTC_DCHECK_GE(max_kbps, -1); // max_kbps == -1 disables it.
rtc::CritScope cs(&crit_sect_);
max_target_bitrate_kbps_ = max_kbps;
}
int32_t FakeEncoder::InitEncode(const VideoCodec* config,
int32_t number_of_cores,
size_t max_payload_size) {
rtc::CritScope cs(&crit_sect_);
config_ = *config;
target_bitrate_.SetBitrate(0, 0, config_.startBitrate * 1000);
configured_input_framerate_ = config_.maxFramerate;
pending_keyframe_ = true;
return 0;
}
int32_t FakeEncoder::Encode(const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) {
unsigned char max_framerate;
unsigned char num_simulcast_streams;
SimulcastStream simulcast_streams[kMaxSimulcastStreams];
EncodedImageCallback* callback;
uint32_t target_bitrate_sum_kbps;
int max_target_bitrate_kbps;
size_t num_encoded_bytes;
int framerate;
VideoCodecMode mode;
bool keyframe;
{
rtc::CritScope cs(&crit_sect_);
max_framerate = config_.maxFramerate;
num_simulcast_streams = config_.numberOfSimulcastStreams;
for (int i = 0; i < num_simulcast_streams; ++i) {
simulcast_streams[i] = config_.simulcastStream[i];
}
callback = callback_;
target_bitrate_sum_kbps = target_bitrate_.get_sum_kbps();
max_target_bitrate_kbps = max_target_bitrate_kbps_;
num_encoded_bytes = sizeof(encoded_buffer_);
mode = config_.mode;
if (configured_input_framerate_ > 0) {
framerate = configured_input_framerate_;
} else {
framerate = max_framerate;
}
keyframe = pending_keyframe_;
pending_keyframe_ = false;
}
for (FrameType frame_type : *frame_types) {
if (frame_type == kVideoFrameKey) {
keyframe = true;
break;
}
}
RTC_DCHECK_GT(max_framerate, 0);
size_t bitrate =
std::max(target_bitrate_sum_kbps, simulcast_streams[0].minBitrate);
if (max_target_bitrate_kbps > 0)
bitrate = std::min(bitrate, static_cast<size_t>(max_target_bitrate_kbps));
size_t bits_available = bitrate * 1000 / framerate;
RTC_DCHECK_GT(num_simulcast_streams, 0);
for (unsigned char i = 0; i < num_simulcast_streams; ++i) {
CodecSpecificInfo specifics;
memset(&specifics, 0, sizeof(specifics));
specifics.codecType = kVideoCodecGeneric;
specifics.codecSpecific.generic.simulcast_idx = i;
size_t min_stream_bits = static_cast<size_t>(
(simulcast_streams[i].minBitrate * 1000) / framerate);
size_t max_stream_bits = static_cast<size_t>(
(simulcast_streams[i].maxBitrate * 1000) / framerate);
size_t stream_bits =
(bits_available > max_stream_bits) ? max_stream_bits : bits_available;
size_t stream_bytes = (stream_bits + 7) / 8;
if (keyframe) {
// The first frame is a key frame and should be larger.
// Store the overshoot bytes and distribute them over the coming frames,
// so that we on average meet the bitrate target.
debt_bytes_ += (kKeyframeSizeFactor - 1) * stream_bytes;
stream_bytes *= kKeyframeSizeFactor;
} else {
if (debt_bytes_ > 0) {
// Pay at most half of the frame size for old debts.
size_t payment_size = std::min(stream_bytes / 2, debt_bytes_);
debt_bytes_ -= payment_size;
stream_bytes -= payment_size;
}
}
if (stream_bytes > num_encoded_bytes)
stream_bytes = num_encoded_bytes;
// Always encode something on the first frame.
if (min_stream_bits > bits_available && i > 0)
continue;
std::unique_ptr<uint8_t[]> encoded_buffer(new uint8_t[num_encoded_bytes]);
memcpy(encoded_buffer.get(), encoded_buffer_, num_encoded_bytes);
EncodedImage encoded(encoded_buffer.get(), stream_bytes, num_encoded_bytes);
encoded.SetTimestamp(input_image.timestamp());
encoded.capture_time_ms_ = input_image.render_time_ms();
encoded._frameType = (*frame_types)[i];
encoded._encodedWidth = simulcast_streams[i].width;
encoded._encodedHeight = simulcast_streams[i].height;
encoded.rotation_ = input_image.rotation();
encoded.content_type_ = (mode == VideoCodecMode::kScreensharing)
? VideoContentType::SCREENSHARE
: VideoContentType::UNSPECIFIED;
specifics.codec_name = ImplementationName();
specifics.codecSpecific.generic.simulcast_idx = i;
RTC_DCHECK(callback);
if (callback->OnEncodedImage(encoded, &specifics, nullptr).error !=
EncodedImageCallback::Result::OK) {
return -1;
}
bits_available -= std::min(encoded._length * 8, bits_available);
}
return 0;
}
int32_t FakeEncoder::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
rtc::CritScope cs(&crit_sect_);
callback_ = callback;
return 0;
}
int32_t FakeEncoder::Release() {
return 0;
}
int32_t FakeEncoder::SetChannelParameters(uint32_t packet_loss, int64_t rtt) {
return 0;
}
int32_t FakeEncoder::SetRateAllocation(
const VideoBitrateAllocation& rate_allocation,
uint32_t framerate) {
rtc::CritScope cs(&crit_sect_);
target_bitrate_ = rate_allocation;
configured_input_framerate_ = framerate;
return 0;
}
const char* FakeEncoder::kImplementationName = "fake_encoder";
const char* FakeEncoder::ImplementationName() const {
return kImplementationName;
}
int FakeEncoder::GetConfiguredInputFramerate() const {
rtc::CritScope cs(&crit_sect_);
return configured_input_framerate_;
}
FakeH264Encoder::FakeH264Encoder(Clock* clock)
: FakeEncoder(clock), callback_(nullptr), idr_counter_(0) {
FakeEncoder::RegisterEncodeCompleteCallback(this);
}
int32_t FakeH264Encoder::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
rtc::CritScope cs(&local_crit_sect_);
callback_ = callback;
return 0;
}
EncodedImageCallback::Result FakeH264Encoder::OnEncodedImage(
const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragments) {
const size_t kSpsSize = 8;
const size_t kPpsSize = 11;
const int kIdrFrequency = 10;
EncodedImageCallback* callback;
int current_idr_counter;
{
rtc::CritScope cs(&local_crit_sect_);
callback = callback_;
current_idr_counter = idr_counter_;
++idr_counter_;
}
RTPFragmentationHeader fragmentation;
if (current_idr_counter % kIdrFrequency == 0 &&
encoded_image._length > kSpsSize + kPpsSize + 1) {
const size_t kNumSlices = 3;
fragmentation.VerifyAndAllocateFragmentationHeader(kNumSlices);
fragmentation.fragmentationOffset[0] = 0;
fragmentation.fragmentationLength[0] = kSpsSize;
fragmentation.fragmentationOffset[1] = kSpsSize;
fragmentation.fragmentationLength[1] = kPpsSize;
fragmentation.fragmentationOffset[2] = kSpsSize + kPpsSize;
fragmentation.fragmentationLength[2] =
encoded_image._length - (kSpsSize + kPpsSize);
const size_t kSpsNalHeader = 0x67;
const size_t kPpsNalHeader = 0x68;
const size_t kIdrNalHeader = 0x65;
encoded_image._buffer[fragmentation.fragmentationOffset[0]] = kSpsNalHeader;
encoded_image._buffer[fragmentation.fragmentationOffset[1]] = kPpsNalHeader;
encoded_image._buffer[fragmentation.fragmentationOffset[2]] = kIdrNalHeader;
} else {
const size_t kNumSlices = 1;
fragmentation.VerifyAndAllocateFragmentationHeader(kNumSlices);
fragmentation.fragmentationOffset[0] = 0;
fragmentation.fragmentationLength[0] = encoded_image._length;
const size_t kNalHeader = 0x41;
encoded_image._buffer[fragmentation.fragmentationOffset[0]] = kNalHeader;
}
uint8_t value = 0;
int fragment_counter = 0;
for (size_t i = 0; i < encoded_image._length; ++i) {
if (fragment_counter == fragmentation.fragmentationVectorSize ||
i != fragmentation.fragmentationOffset[fragment_counter]) {
encoded_image._buffer[i] = value++;
} else {
++fragment_counter;
}
}
CodecSpecificInfo specifics;
memset(&specifics, 0, sizeof(specifics));
specifics.codecType = kVideoCodecH264;
specifics.codecSpecific.H264.packetization_mode =
H264PacketizationMode::NonInterleaved;
RTC_DCHECK(callback);
return callback->OnEncodedImage(encoded_image, &specifics, &fragmentation);
}
DelayedEncoder::DelayedEncoder(Clock* clock, int delay_ms)
: test::FakeEncoder(clock), delay_ms_(delay_ms) {
// The encoder could be created on a different thread than
// it is being used on.
sequence_checker_.Detach();
}
void DelayedEncoder::SetDelay(int delay_ms) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
delay_ms_ = delay_ms;
}
int32_t DelayedEncoder::Encode(const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
SleepMs(delay_ms_);
return FakeEncoder::Encode(input_image, codec_specific_info, frame_types);
}
MultithreadedFakeH264Encoder::MultithreadedFakeH264Encoder(Clock* clock)
: test::FakeH264Encoder(clock),
current_queue_(0),
queue1_(nullptr),
queue2_(nullptr) {
// The encoder could be created on a different thread than
// it is being used on.
sequence_checker_.Detach();
}
int32_t MultithreadedFakeH264Encoder::InitEncode(const VideoCodec* config,
int32_t number_of_cores,
size_t max_payload_size) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
queue1_.reset(new rtc::TaskQueue("Queue 1"));
queue2_.reset(new rtc::TaskQueue("Queue 2"));
return FakeH264Encoder::InitEncode(config, number_of_cores, max_payload_size);
}
class MultithreadedFakeH264Encoder::EncodeTask : public rtc::QueuedTask {
public:
EncodeTask(MultithreadedFakeH264Encoder* encoder,
const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types)
: encoder_(encoder),
input_image_(input_image),
codec_specific_info_(),
frame_types_(*frame_types) {
if (codec_specific_info)
codec_specific_info_ = *codec_specific_info;
}
private:
bool Run() override {
encoder_->EncodeCallback(input_image_, &codec_specific_info_,
&frame_types_);
return true;
}
MultithreadedFakeH264Encoder* const encoder_;
VideoFrame input_image_;
CodecSpecificInfo codec_specific_info_;
std::vector<FrameType> frame_types_;
};
int32_t MultithreadedFakeH264Encoder::Encode(
const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
std::unique_ptr<rtc::TaskQueue>& queue =
(current_queue_++ % 2 == 0) ? queue1_ : queue2_;
if (!queue) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
queue->PostTask(std::unique_ptr<rtc::QueuedTask>(
new EncodeTask(this, input_image, codec_specific_info, frame_types)));
return WEBRTC_VIDEO_CODEC_OK;
}
int32_t MultithreadedFakeH264Encoder::EncodeCallback(
const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) {
return FakeH264Encoder::Encode(input_image, codec_specific_info, frame_types);
}
int32_t MultithreadedFakeH264Encoder::Release() {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
queue1_.reset();
queue2_.reset();
return FakeH264Encoder::Release();
}
} // namespace test
} // namespace webrtc