Bug: webrtc:5876 Change-Id: Iae14e5f1679067a5a5e0584ca830aee0870c8807 Reviewed-on: https://webrtc-review.googlesource.com/c/111463 Reviewed-by: Karl Wiberg <kwiberg@webrtc.org> Commit-Queue: Niels Moller <nisse@webrtc.org> Cr-Commit-Position: refs/heads/master@{#25715}
453 lines
15 KiB
C++
453 lines
15 KiB
C++
/*
|
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "test/fake_encoder.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
|
|
#include "api/video_codecs/vp8_temporal_layers.h"
|
|
#include "modules/video_coding/include/video_codec_interface.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "system_wrappers/include/sleep.h"
|
|
|
|
namespace webrtc {
|
|
namespace test {
|
|
namespace {
|
|
const int kKeyframeSizeFactor = 5;
|
|
|
|
// Inverse of proportion of frames assigned to each temporal layer for all
|
|
// possible temporal layers numbers.
|
|
const int kTemporalLayerRateFactor[4][4] = {
|
|
{1, 0, 0, 0}, // 1/1
|
|
{2, 2, 0, 0}, // 1/2 + 1/2
|
|
{4, 4, 2, 0}, // 1/4 + 1/4 + 1/2
|
|
{8, 8, 4, 2}, // 1/8 + 1/8 + 1/4 + 1/2
|
|
};
|
|
|
|
void WriteCounter(unsigned char* payload, uint32_t counter) {
|
|
payload[0] = (counter & 0x00FF);
|
|
payload[1] = (counter & 0xFF00) >> 8;
|
|
payload[2] = (counter & 0xFF0000) >> 16;
|
|
payload[3] = (counter & 0xFF000000) >> 24;
|
|
}
|
|
|
|
}; // namespace
|
|
|
|
FakeEncoder::FakeEncoder(Clock* clock)
|
|
: clock_(clock),
|
|
callback_(nullptr),
|
|
configured_input_framerate_(-1),
|
|
max_target_bitrate_kbps_(-1),
|
|
pending_keyframe_(true),
|
|
counter_(0),
|
|
debt_bytes_(0) {
|
|
// Generate some arbitrary not-all-zero data
|
|
for (size_t i = 0; i < sizeof(encoded_buffer_); ++i) {
|
|
encoded_buffer_[i] = static_cast<uint8_t>(i);
|
|
}
|
|
for (bool& used : used_layers_) {
|
|
used = false;
|
|
}
|
|
}
|
|
|
|
void FakeEncoder::SetMaxBitrate(int max_kbps) {
|
|
RTC_DCHECK_GE(max_kbps, -1); // max_kbps == -1 disables it.
|
|
rtc::CritScope cs(&crit_sect_);
|
|
max_target_bitrate_kbps_ = max_kbps;
|
|
SetRateAllocation(target_bitrate_, configured_input_framerate_);
|
|
}
|
|
|
|
int32_t FakeEncoder::InitEncode(const VideoCodec* config,
|
|
int32_t number_of_cores,
|
|
size_t max_payload_size) {
|
|
rtc::CritScope cs(&crit_sect_);
|
|
config_ = *config;
|
|
target_bitrate_.SetBitrate(0, 0, config_.startBitrate * 1000);
|
|
configured_input_framerate_ = config_.maxFramerate;
|
|
pending_keyframe_ = true;
|
|
last_frame_info_ = FrameInfo();
|
|
return 0;
|
|
}
|
|
|
|
int32_t FakeEncoder::Encode(const VideoFrame& input_image,
|
|
const CodecSpecificInfo* codec_specific_info,
|
|
const std::vector<FrameType>* frame_types) {
|
|
unsigned char max_framerate;
|
|
unsigned char num_simulcast_streams;
|
|
SimulcastStream simulcast_streams[kMaxSimulcastStreams];
|
|
EncodedImageCallback* callback;
|
|
VideoBitrateAllocation target_bitrate;
|
|
int framerate;
|
|
VideoCodecMode mode;
|
|
bool keyframe;
|
|
uint32_t counter;
|
|
{
|
|
rtc::CritScope cs(&crit_sect_);
|
|
max_framerate = config_.maxFramerate;
|
|
num_simulcast_streams = config_.numberOfSimulcastStreams;
|
|
for (int i = 0; i < num_simulcast_streams; ++i) {
|
|
simulcast_streams[i] = config_.simulcastStream[i];
|
|
}
|
|
callback = callback_;
|
|
target_bitrate = target_bitrate_;
|
|
mode = config_.mode;
|
|
if (configured_input_framerate_ > 0) {
|
|
framerate = configured_input_framerate_;
|
|
} else {
|
|
framerate = max_framerate;
|
|
}
|
|
keyframe = pending_keyframe_;
|
|
pending_keyframe_ = false;
|
|
counter = counter_++;
|
|
}
|
|
|
|
FrameInfo frame_info =
|
|
NextFrame(frame_types, keyframe, num_simulcast_streams, target_bitrate,
|
|
simulcast_streams, framerate);
|
|
for (uint8_t i = 0; i < frame_info.layers.size(); ++i) {
|
|
constexpr int kMinPayLoadLength = 14;
|
|
if (frame_info.layers[i].size < kMinPayLoadLength) {
|
|
// Drop this temporal layer.
|
|
continue;
|
|
}
|
|
|
|
CodecSpecificInfo specifics;
|
|
memset(&specifics, 0, sizeof(specifics));
|
|
specifics.codecType = kVideoCodecGeneric;
|
|
std::unique_ptr<uint8_t[]> encoded_buffer(
|
|
new uint8_t[frame_info.layers[i].size]);
|
|
memcpy(encoded_buffer.get(), encoded_buffer_,
|
|
frame_info.layers[i].size - 4);
|
|
// Write a counter to the image to make each frame unique.
|
|
WriteCounter(encoded_buffer.get() + frame_info.layers[i].size - 4, counter);
|
|
EncodedImage encoded(encoded_buffer.get(), frame_info.layers[i].size,
|
|
sizeof(encoded_buffer_));
|
|
encoded.SetTimestamp(input_image.timestamp());
|
|
encoded.capture_time_ms_ = input_image.render_time_ms();
|
|
encoded._frameType =
|
|
frame_info.keyframe ? kVideoFrameKey : kVideoFrameDelta;
|
|
encoded._encodedWidth = simulcast_streams[i].width;
|
|
encoded._encodedHeight = simulcast_streams[i].height;
|
|
encoded.rotation_ = input_image.rotation();
|
|
encoded.content_type_ = (mode == VideoCodecMode::kScreensharing)
|
|
? VideoContentType::SCREENSHARE
|
|
: VideoContentType::UNSPECIFIED;
|
|
encoded.SetSpatialIndex(i);
|
|
if (callback->OnEncodedImage(encoded, &specifics, nullptr).error !=
|
|
EncodedImageCallback::Result::OK) {
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
FakeEncoder::FrameInfo FakeEncoder::NextFrame(
|
|
const std::vector<FrameType>* frame_types,
|
|
bool keyframe,
|
|
uint8_t num_simulcast_streams,
|
|
const VideoBitrateAllocation& target_bitrate,
|
|
SimulcastStream simulcast_streams[kMaxSimulcastStreams],
|
|
int framerate) {
|
|
FrameInfo frame_info;
|
|
frame_info.keyframe = keyframe;
|
|
|
|
if (frame_types) {
|
|
for (FrameType frame_type : *frame_types) {
|
|
if (frame_type == kVideoFrameKey) {
|
|
frame_info.keyframe = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
rtc::CritScope cs(&crit_sect_);
|
|
for (uint8_t i = 0; i < num_simulcast_streams; ++i) {
|
|
if (target_bitrate.GetBitrate(i, 0) > 0) {
|
|
int temporal_id = last_frame_info_.layers.size() > i
|
|
? ++last_frame_info_.layers[i].temporal_id %
|
|
simulcast_streams[i].numberOfTemporalLayers
|
|
: 0;
|
|
frame_info.layers.emplace_back(0, temporal_id);
|
|
}
|
|
}
|
|
|
|
if (last_frame_info_.layers.size() < frame_info.layers.size()) {
|
|
// A new keyframe is needed since a new layer will be added.
|
|
frame_info.keyframe = true;
|
|
}
|
|
|
|
for (uint8_t i = 0; i < frame_info.layers.size(); ++i) {
|
|
FrameInfo::SpatialLayer& layer_info = frame_info.layers[i];
|
|
if (frame_info.keyframe) {
|
|
layer_info.temporal_id = 0;
|
|
size_t avg_frame_size =
|
|
(target_bitrate.GetBitrate(i, 0) + 7) *
|
|
kTemporalLayerRateFactor[frame_info.layers.size() - 1][i] /
|
|
(8 * framerate);
|
|
|
|
// The first frame is a key frame and should be larger.
|
|
// Store the overshoot bytes and distribute them over the coming frames,
|
|
// so that we on average meet the bitrate target.
|
|
debt_bytes_ += (kKeyframeSizeFactor - 1) * avg_frame_size;
|
|
layer_info.size = kKeyframeSizeFactor * avg_frame_size;
|
|
} else {
|
|
size_t avg_frame_size =
|
|
(target_bitrate.GetBitrate(i, layer_info.temporal_id) + 7) *
|
|
kTemporalLayerRateFactor[frame_info.layers.size() - 1][i] /
|
|
(8 * framerate);
|
|
layer_info.size = avg_frame_size;
|
|
if (debt_bytes_ > 0) {
|
|
// Pay at most half of the frame size for old debts.
|
|
size_t payment_size = std::min(avg_frame_size / 2, debt_bytes_);
|
|
debt_bytes_ -= payment_size;
|
|
layer_info.size -= payment_size;
|
|
}
|
|
}
|
|
}
|
|
last_frame_info_ = frame_info;
|
|
return frame_info;
|
|
}
|
|
|
|
int32_t FakeEncoder::RegisterEncodeCompleteCallback(
|
|
EncodedImageCallback* callback) {
|
|
rtc::CritScope cs(&crit_sect_);
|
|
callback_ = callback;
|
|
return 0;
|
|
}
|
|
|
|
int32_t FakeEncoder::Release() {
|
|
return 0;
|
|
}
|
|
|
|
int32_t FakeEncoder::SetRateAllocation(
|
|
const VideoBitrateAllocation& rate_allocation,
|
|
uint32_t framerate) {
|
|
rtc::CritScope cs(&crit_sect_);
|
|
target_bitrate_ = rate_allocation;
|
|
int allocated_bitrate_kbps = target_bitrate_.get_sum_kbps();
|
|
|
|
// Scale bitrate allocation to not exceed the given max target bitrate.
|
|
if (max_target_bitrate_kbps_ > 0 &&
|
|
allocated_bitrate_kbps > max_target_bitrate_kbps_) {
|
|
for (uint8_t spatial_idx = 0; spatial_idx < kMaxSpatialLayers;
|
|
++spatial_idx) {
|
|
for (uint8_t temporal_idx = 0; temporal_idx < kMaxTemporalStreams;
|
|
++temporal_idx) {
|
|
if (target_bitrate_.HasBitrate(spatial_idx, temporal_idx)) {
|
|
uint32_t bitrate =
|
|
target_bitrate_.GetBitrate(spatial_idx, temporal_idx);
|
|
bitrate = static_cast<uint32_t>(
|
|
(bitrate * int64_t{max_target_bitrate_kbps_}) /
|
|
allocated_bitrate_kbps);
|
|
target_bitrate_.SetBitrate(spatial_idx, temporal_idx, bitrate);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
configured_input_framerate_ = framerate;
|
|
return 0;
|
|
}
|
|
|
|
const char* FakeEncoder::kImplementationName = "fake_encoder";
|
|
VideoEncoder::EncoderInfo FakeEncoder::GetEncoderInfo() const {
|
|
EncoderInfo info;
|
|
info.implementation_name = kImplementationName;
|
|
return info;
|
|
}
|
|
|
|
int FakeEncoder::GetConfiguredInputFramerate() const {
|
|
rtc::CritScope cs(&crit_sect_);
|
|
return configured_input_framerate_;
|
|
}
|
|
|
|
FakeH264Encoder::FakeH264Encoder(Clock* clock)
|
|
: FakeEncoder(clock), callback_(nullptr), idr_counter_(0) {
|
|
FakeEncoder::RegisterEncodeCompleteCallback(this);
|
|
}
|
|
|
|
int32_t FakeH264Encoder::RegisterEncodeCompleteCallback(
|
|
EncodedImageCallback* callback) {
|
|
rtc::CritScope cs(&local_crit_sect_);
|
|
callback_ = callback;
|
|
return 0;
|
|
}
|
|
|
|
EncodedImageCallback::Result FakeH264Encoder::OnEncodedImage(
|
|
const EncodedImage& encoded_image,
|
|
const CodecSpecificInfo* codec_specific_info,
|
|
const RTPFragmentationHeader* fragments) {
|
|
const size_t kSpsSize = 8;
|
|
const size_t kPpsSize = 11;
|
|
const int kIdrFrequency = 10;
|
|
EncodedImageCallback* callback;
|
|
int current_idr_counter;
|
|
{
|
|
rtc::CritScope cs(&local_crit_sect_);
|
|
callback = callback_;
|
|
current_idr_counter = idr_counter_;
|
|
++idr_counter_;
|
|
}
|
|
RTPFragmentationHeader fragmentation;
|
|
if (current_idr_counter % kIdrFrequency == 0 &&
|
|
encoded_image._length > kSpsSize + kPpsSize + 1) {
|
|
const size_t kNumSlices = 3;
|
|
fragmentation.VerifyAndAllocateFragmentationHeader(kNumSlices);
|
|
fragmentation.fragmentationOffset[0] = 0;
|
|
fragmentation.fragmentationLength[0] = kSpsSize;
|
|
fragmentation.fragmentationOffset[1] = kSpsSize;
|
|
fragmentation.fragmentationLength[1] = kPpsSize;
|
|
fragmentation.fragmentationOffset[2] = kSpsSize + kPpsSize;
|
|
fragmentation.fragmentationLength[2] =
|
|
encoded_image._length - (kSpsSize + kPpsSize);
|
|
const size_t kSpsNalHeader = 0x67;
|
|
const size_t kPpsNalHeader = 0x68;
|
|
const size_t kIdrNalHeader = 0x65;
|
|
encoded_image._buffer[fragmentation.fragmentationOffset[0]] = kSpsNalHeader;
|
|
encoded_image._buffer[fragmentation.fragmentationOffset[1]] = kPpsNalHeader;
|
|
encoded_image._buffer[fragmentation.fragmentationOffset[2]] = kIdrNalHeader;
|
|
} else {
|
|
const size_t kNumSlices = 1;
|
|
fragmentation.VerifyAndAllocateFragmentationHeader(kNumSlices);
|
|
fragmentation.fragmentationOffset[0] = 0;
|
|
fragmentation.fragmentationLength[0] = encoded_image._length;
|
|
const size_t kNalHeader = 0x41;
|
|
encoded_image._buffer[fragmentation.fragmentationOffset[0]] = kNalHeader;
|
|
}
|
|
uint8_t value = 0;
|
|
int fragment_counter = 0;
|
|
for (size_t i = 0; i < encoded_image._length; ++i) {
|
|
if (fragment_counter == fragmentation.fragmentationVectorSize ||
|
|
i != fragmentation.fragmentationOffset[fragment_counter]) {
|
|
encoded_image._buffer[i] = value++;
|
|
} else {
|
|
++fragment_counter;
|
|
}
|
|
}
|
|
CodecSpecificInfo specifics;
|
|
memset(&specifics, 0, sizeof(specifics));
|
|
specifics.codecType = kVideoCodecH264;
|
|
specifics.codecSpecific.H264.packetization_mode =
|
|
H264PacketizationMode::NonInterleaved;
|
|
RTC_DCHECK(callback);
|
|
return callback->OnEncodedImage(encoded_image, &specifics, &fragmentation);
|
|
}
|
|
|
|
DelayedEncoder::DelayedEncoder(Clock* clock, int delay_ms)
|
|
: test::FakeEncoder(clock), delay_ms_(delay_ms) {
|
|
// The encoder could be created on a different thread than
|
|
// it is being used on.
|
|
sequence_checker_.Detach();
|
|
}
|
|
|
|
void DelayedEncoder::SetDelay(int delay_ms) {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
|
|
delay_ms_ = delay_ms;
|
|
}
|
|
|
|
int32_t DelayedEncoder::Encode(const VideoFrame& input_image,
|
|
const CodecSpecificInfo* codec_specific_info,
|
|
const std::vector<FrameType>* frame_types) {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
|
|
|
|
SleepMs(delay_ms_);
|
|
|
|
return FakeEncoder::Encode(input_image, codec_specific_info, frame_types);
|
|
}
|
|
|
|
MultithreadedFakeH264Encoder::MultithreadedFakeH264Encoder(Clock* clock)
|
|
: test::FakeH264Encoder(clock),
|
|
current_queue_(0),
|
|
queue1_(nullptr),
|
|
queue2_(nullptr) {
|
|
// The encoder could be created on a different thread than
|
|
// it is being used on.
|
|
sequence_checker_.Detach();
|
|
}
|
|
|
|
int32_t MultithreadedFakeH264Encoder::InitEncode(const VideoCodec* config,
|
|
int32_t number_of_cores,
|
|
size_t max_payload_size) {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
|
|
|
|
queue1_.reset(new rtc::TaskQueue("Queue 1"));
|
|
queue2_.reset(new rtc::TaskQueue("Queue 2"));
|
|
|
|
return FakeH264Encoder::InitEncode(config, number_of_cores, max_payload_size);
|
|
}
|
|
|
|
class MultithreadedFakeH264Encoder::EncodeTask : public rtc::QueuedTask {
|
|
public:
|
|
EncodeTask(MultithreadedFakeH264Encoder* encoder,
|
|
const VideoFrame& input_image,
|
|
const CodecSpecificInfo* codec_specific_info,
|
|
const std::vector<FrameType>* frame_types)
|
|
: encoder_(encoder),
|
|
input_image_(input_image),
|
|
codec_specific_info_(),
|
|
frame_types_(*frame_types) {
|
|
if (codec_specific_info)
|
|
codec_specific_info_ = *codec_specific_info;
|
|
}
|
|
|
|
private:
|
|
bool Run() override {
|
|
encoder_->EncodeCallback(input_image_, &codec_specific_info_,
|
|
&frame_types_);
|
|
return true;
|
|
}
|
|
|
|
MultithreadedFakeH264Encoder* const encoder_;
|
|
VideoFrame input_image_;
|
|
CodecSpecificInfo codec_specific_info_;
|
|
std::vector<FrameType> frame_types_;
|
|
};
|
|
|
|
int32_t MultithreadedFakeH264Encoder::Encode(
|
|
const VideoFrame& input_image,
|
|
const CodecSpecificInfo* codec_specific_info,
|
|
const std::vector<FrameType>* frame_types) {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
|
|
|
|
std::unique_ptr<rtc::TaskQueue>& queue =
|
|
(current_queue_++ % 2 == 0) ? queue1_ : queue2_;
|
|
|
|
if (!queue) {
|
|
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
|
|
}
|
|
|
|
queue->PostTask(std::unique_ptr<rtc::QueuedTask>(
|
|
new EncodeTask(this, input_image, codec_specific_info, frame_types)));
|
|
|
|
return WEBRTC_VIDEO_CODEC_OK;
|
|
}
|
|
|
|
int32_t MultithreadedFakeH264Encoder::EncodeCallback(
|
|
const VideoFrame& input_image,
|
|
const CodecSpecificInfo* codec_specific_info,
|
|
const std::vector<FrameType>* frame_types) {
|
|
return FakeH264Encoder::Encode(input_image, codec_specific_info, frame_types);
|
|
}
|
|
|
|
int32_t MultithreadedFakeH264Encoder::Release() {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
|
|
|
|
queue1_.reset();
|
|
queue2_.reset();
|
|
|
|
return FakeH264Encoder::Release();
|
|
}
|
|
|
|
} // namespace test
|
|
} // namespace webrtc
|