We want to remove energy_ entirely as we've seen that carrying around this potentially invalid value is dangerous. Results in the removal of AudioBuffer::is_muted(). This wasn't used in practice any longer, after the level calculation moved directly to channel.cc Instead, now use ProcessMuted() in channel.cc, to shortcut the level computation when the signal is muted. BUG=3315 TESTED=Muting the channel in voe_cmd_test results in rms=127. R=bjornv@webrtc.org, kwiberg@webrtc.org Review URL: https://webrtc-codereview.appspot.com/12529004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@6159 4adac7df-926f-26a2-2b94-8c16560cd09d
427 lines
13 KiB
C++
427 lines
13 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/audio_processing/audio_buffer.h"
|
|
|
|
#include "webrtc/common_audio/include/audio_util.h"
|
|
#include "webrtc/common_audio/resampler/push_sinc_resampler.h"
|
|
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
enum {
|
|
kSamplesPer8kHzChannel = 80,
|
|
kSamplesPer16kHzChannel = 160,
|
|
kSamplesPer32kHzChannel = 320
|
|
};
|
|
|
|
bool HasKeyboardChannel(AudioProcessing::ChannelLayout layout) {
|
|
switch (layout) {
|
|
case AudioProcessing::kMono:
|
|
case AudioProcessing::kStereo:
|
|
return false;
|
|
case AudioProcessing::kMonoAndKeyboard:
|
|
case AudioProcessing::kStereoAndKeyboard:
|
|
return true;
|
|
}
|
|
assert(false);
|
|
return false;
|
|
}
|
|
|
|
int KeyboardChannelIndex(AudioProcessing::ChannelLayout layout) {
|
|
switch (layout) {
|
|
case AudioProcessing::kMono:
|
|
case AudioProcessing::kStereo:
|
|
assert(false);
|
|
return -1;
|
|
case AudioProcessing::kMonoAndKeyboard:
|
|
return 1;
|
|
case AudioProcessing::kStereoAndKeyboard:
|
|
return 2;
|
|
}
|
|
assert(false);
|
|
return -1;
|
|
}
|
|
|
|
|
|
void StereoToMono(const float* left, const float* right, float* out,
|
|
int samples_per_channel) {
|
|
for (int i = 0; i < samples_per_channel; ++i) {
|
|
out[i] = (left[i] + right[i]) / 2;
|
|
}
|
|
}
|
|
|
|
void StereoToMono(const int16_t* left, const int16_t* right, int16_t* out,
|
|
int samples_per_channel) {
|
|
for (int i = 0; i < samples_per_channel; ++i) {
|
|
out[i] = (left[i] + right[i]) >> 1;
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
class SplitChannelBuffer {
|
|
public:
|
|
SplitChannelBuffer(int samples_per_split_channel, int num_channels)
|
|
: low_(samples_per_split_channel, num_channels),
|
|
high_(samples_per_split_channel, num_channels) {
|
|
}
|
|
~SplitChannelBuffer() {}
|
|
|
|
int16_t* low_channel(int i) { return low_.channel(i); }
|
|
int16_t* high_channel(int i) { return high_.channel(i); }
|
|
|
|
private:
|
|
ChannelBuffer<int16_t> low_;
|
|
ChannelBuffer<int16_t> high_;
|
|
};
|
|
|
|
AudioBuffer::AudioBuffer(int input_samples_per_channel,
|
|
int num_input_channels,
|
|
int process_samples_per_channel,
|
|
int num_process_channels,
|
|
int output_samples_per_channel)
|
|
: input_samples_per_channel_(input_samples_per_channel),
|
|
num_input_channels_(num_input_channels),
|
|
proc_samples_per_channel_(process_samples_per_channel),
|
|
num_proc_channels_(num_process_channels),
|
|
output_samples_per_channel_(output_samples_per_channel),
|
|
samples_per_split_channel_(proc_samples_per_channel_),
|
|
num_mixed_channels_(0),
|
|
num_mixed_low_pass_channels_(0),
|
|
reference_copied_(false),
|
|
activity_(AudioFrame::kVadUnknown),
|
|
data_(NULL),
|
|
keyboard_data_(NULL),
|
|
channels_(new ChannelBuffer<int16_t>(proc_samples_per_channel_,
|
|
num_proc_channels_)) {
|
|
assert(input_samples_per_channel_ > 0);
|
|
assert(proc_samples_per_channel_ > 0);
|
|
assert(output_samples_per_channel_ > 0);
|
|
assert(num_input_channels_ > 0 && num_input_channels_ <= 2);
|
|
assert(num_proc_channels_ <= num_input_channels);
|
|
|
|
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
|
|
input_buffer_.reset(new ChannelBuffer<float>(input_samples_per_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_ ||
|
|
output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
// Create an intermediate buffer for resampling.
|
|
process_buffer_.reset(new ChannelBuffer<float>(proc_samples_per_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_) {
|
|
input_resamplers_.reserve(num_proc_channels_);
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
input_resamplers_.push_back(
|
|
new PushSincResampler(input_samples_per_channel_,
|
|
proc_samples_per_channel_));
|
|
}
|
|
}
|
|
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
output_resamplers_.reserve(num_proc_channels_);
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
output_resamplers_.push_back(
|
|
new PushSincResampler(proc_samples_per_channel_,
|
|
output_samples_per_channel_));
|
|
}
|
|
}
|
|
|
|
if (proc_samples_per_channel_ == kSamplesPer32kHzChannel) {
|
|
samples_per_split_channel_ = kSamplesPer16kHzChannel;
|
|
split_channels_.reset(new SplitChannelBuffer(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
filter_states_.reset(new SplitFilterStates[num_proc_channels_]);
|
|
}
|
|
}
|
|
|
|
AudioBuffer::~AudioBuffer() {}
|
|
|
|
void AudioBuffer::CopyFrom(const float* const* data,
|
|
int samples_per_channel,
|
|
AudioProcessing::ChannelLayout layout) {
|
|
assert(samples_per_channel == input_samples_per_channel_);
|
|
assert(ChannelsFromLayout(layout) == num_input_channels_);
|
|
InitForNewData();
|
|
|
|
if (HasKeyboardChannel(layout)) {
|
|
keyboard_data_ = data[KeyboardChannelIndex(layout)];
|
|
}
|
|
|
|
// Downmix.
|
|
const float* const* data_ptr = data;
|
|
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
|
|
StereoToMono(data[0],
|
|
data[1],
|
|
input_buffer_->channel(0),
|
|
input_samples_per_channel_);
|
|
data_ptr = input_buffer_->channels();
|
|
}
|
|
|
|
// Resample.
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_) {
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
input_resamplers_[i]->Resample(data_ptr[i],
|
|
input_samples_per_channel_,
|
|
process_buffer_->channel(i),
|
|
proc_samples_per_channel_);
|
|
}
|
|
data_ptr = process_buffer_->channels();
|
|
}
|
|
|
|
// Convert to int16.
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
ScaleAndRoundToInt16(data_ptr[i], proc_samples_per_channel_,
|
|
channels_->channel(i));
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::CopyTo(int samples_per_channel,
|
|
AudioProcessing::ChannelLayout layout,
|
|
float* const* data) {
|
|
assert(samples_per_channel == output_samples_per_channel_);
|
|
assert(ChannelsFromLayout(layout) == num_proc_channels_);
|
|
|
|
// Convert to float.
|
|
float* const* data_ptr = data;
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
// Convert to an intermediate buffer for subsequent resampling.
|
|
data_ptr = process_buffer_->channels();
|
|
}
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
ScaleToFloat(channels_->channel(i), proc_samples_per_channel_, data_ptr[i]);
|
|
}
|
|
|
|
// Resample.
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
output_resamplers_[i]->Resample(data_ptr[i],
|
|
proc_samples_per_channel_,
|
|
data[i],
|
|
output_samples_per_channel_);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::InitForNewData() {
|
|
data_ = NULL;
|
|
keyboard_data_ = NULL;
|
|
num_mixed_channels_ = 0;
|
|
num_mixed_low_pass_channels_ = 0;
|
|
reference_copied_ = false;
|
|
activity_ = AudioFrame::kVadUnknown;
|
|
}
|
|
|
|
const int16_t* AudioBuffer::data(int channel) const {
|
|
assert(channel >= 0 && channel < num_proc_channels_);
|
|
if (data_ != NULL) {
|
|
assert(channel == 0 && num_proc_channels_ == 1);
|
|
return data_;
|
|
}
|
|
|
|
return channels_->channel(channel);
|
|
}
|
|
|
|
int16_t* AudioBuffer::data(int channel) {
|
|
const AudioBuffer* t = this;
|
|
return const_cast<int16_t*>(t->data(channel));
|
|
}
|
|
|
|
const int16_t* AudioBuffer::low_pass_split_data(int channel) const {
|
|
assert(channel >= 0 && channel < num_proc_channels_);
|
|
if (split_channels_.get() == NULL) {
|
|
return data(channel);
|
|
}
|
|
|
|
return split_channels_->low_channel(channel);
|
|
}
|
|
|
|
int16_t* AudioBuffer::low_pass_split_data(int channel) {
|
|
const AudioBuffer* t = this;
|
|
return const_cast<int16_t*>(t->low_pass_split_data(channel));
|
|
}
|
|
|
|
const int16_t* AudioBuffer::high_pass_split_data(int channel) const {
|
|
assert(channel >= 0 && channel < num_proc_channels_);
|
|
if (split_channels_.get() == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return split_channels_->high_channel(channel);
|
|
}
|
|
|
|
int16_t* AudioBuffer::high_pass_split_data(int channel) {
|
|
const AudioBuffer* t = this;
|
|
return const_cast<int16_t*>(t->high_pass_split_data(channel));
|
|
}
|
|
|
|
const int16_t* AudioBuffer::mixed_data(int channel) const {
|
|
assert(channel >= 0 && channel < num_mixed_channels_);
|
|
|
|
return mixed_channels_->channel(channel);
|
|
}
|
|
|
|
const int16_t* AudioBuffer::mixed_low_pass_data(int channel) const {
|
|
assert(channel >= 0 && channel < num_mixed_low_pass_channels_);
|
|
|
|
return mixed_low_pass_channels_->channel(channel);
|
|
}
|
|
|
|
const int16_t* AudioBuffer::low_pass_reference(int channel) const {
|
|
assert(channel >= 0 && channel < num_proc_channels_);
|
|
if (!reference_copied_) {
|
|
return NULL;
|
|
}
|
|
|
|
return low_pass_reference_channels_->channel(channel);
|
|
}
|
|
|
|
const float* AudioBuffer::keyboard_data() const {
|
|
return keyboard_data_;
|
|
}
|
|
|
|
SplitFilterStates* AudioBuffer::filter_states(int channel) {
|
|
assert(channel >= 0 && channel < num_proc_channels_);
|
|
return &filter_states_[channel];
|
|
}
|
|
|
|
void AudioBuffer::set_activity(AudioFrame::VADActivity activity) {
|
|
activity_ = activity;
|
|
}
|
|
|
|
AudioFrame::VADActivity AudioBuffer::activity() const {
|
|
return activity_;
|
|
}
|
|
|
|
int AudioBuffer::num_channels() const {
|
|
return num_proc_channels_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_channel() const {
|
|
return proc_samples_per_channel_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_split_channel() const {
|
|
return samples_per_split_channel_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_keyboard_channel() const {
|
|
// We don't resample the keyboard channel.
|
|
return input_samples_per_channel_;
|
|
}
|
|
|
|
// TODO(andrew): Do deinterleaving and mixing in one step?
|
|
void AudioBuffer::DeinterleaveFrom(AudioFrame* frame) {
|
|
assert(proc_samples_per_channel_ == input_samples_per_channel_);
|
|
assert(num_proc_channels_ == num_input_channels_);
|
|
assert(frame->num_channels_ == num_proc_channels_);
|
|
assert(frame->samples_per_channel_ == proc_samples_per_channel_);
|
|
InitForNewData();
|
|
activity_ = frame->vad_activity_;
|
|
|
|
if (num_proc_channels_ == 1) {
|
|
// We can get away with a pointer assignment in this case.
|
|
data_ = frame->data_;
|
|
return;
|
|
}
|
|
|
|
int16_t* interleaved = frame->data_;
|
|
for (int i = 0; i < num_proc_channels_; i++) {
|
|
int16_t* deinterleaved = channels_->channel(i);
|
|
int interleaved_idx = i;
|
|
for (int j = 0; j < proc_samples_per_channel_; j++) {
|
|
deinterleaved[j] = interleaved[interleaved_idx];
|
|
interleaved_idx += num_proc_channels_;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::InterleaveTo(AudioFrame* frame, bool data_changed) const {
|
|
assert(proc_samples_per_channel_ == output_samples_per_channel_);
|
|
assert(num_proc_channels_ == num_input_channels_);
|
|
assert(frame->num_channels_ == num_proc_channels_);
|
|
assert(frame->samples_per_channel_ == proc_samples_per_channel_);
|
|
frame->vad_activity_ = activity_;
|
|
|
|
if (!data_changed) {
|
|
return;
|
|
}
|
|
|
|
if (num_proc_channels_ == 1) {
|
|
assert(data_ == frame->data_);
|
|
return;
|
|
}
|
|
|
|
int16_t* interleaved = frame->data_;
|
|
for (int i = 0; i < num_proc_channels_; i++) {
|
|
int16_t* deinterleaved = channels_->channel(i);
|
|
int interleaved_idx = i;
|
|
for (int j = 0; j < proc_samples_per_channel_; j++) {
|
|
interleaved[interleaved_idx] = deinterleaved[j];
|
|
interleaved_idx += num_proc_channels_;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::CopyAndMix(int num_mixed_channels) {
|
|
// We currently only support the stereo to mono case.
|
|
assert(num_proc_channels_ == 2);
|
|
assert(num_mixed_channels == 1);
|
|
if (!mixed_channels_.get()) {
|
|
mixed_channels_.reset(
|
|
new ChannelBuffer<int16_t>(proc_samples_per_channel_,
|
|
num_mixed_channels));
|
|
}
|
|
|
|
StereoToMono(channels_->channel(0),
|
|
channels_->channel(1),
|
|
mixed_channels_->channel(0),
|
|
proc_samples_per_channel_);
|
|
|
|
num_mixed_channels_ = num_mixed_channels;
|
|
}
|
|
|
|
void AudioBuffer::CopyAndMixLowPass(int num_mixed_channels) {
|
|
// We currently only support the stereo to mono case.
|
|
assert(num_proc_channels_ == 2);
|
|
assert(num_mixed_channels == 1);
|
|
if (!mixed_low_pass_channels_.get()) {
|
|
mixed_low_pass_channels_.reset(
|
|
new ChannelBuffer<int16_t>(samples_per_split_channel_,
|
|
num_mixed_channels));
|
|
}
|
|
|
|
StereoToMono(low_pass_split_data(0),
|
|
low_pass_split_data(1),
|
|
mixed_low_pass_channels_->channel(0),
|
|
samples_per_split_channel_);
|
|
|
|
num_mixed_low_pass_channels_ = num_mixed_channels;
|
|
}
|
|
|
|
void AudioBuffer::CopyLowPassToReference() {
|
|
reference_copied_ = true;
|
|
if (!low_pass_reference_channels_.get()) {
|
|
low_pass_reference_channels_.reset(
|
|
new ChannelBuffer<int16_t>(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
for (int i = 0; i < num_proc_channels_; i++) {
|
|
low_pass_reference_channels_->CopyFrom(low_pass_split_data(i), i);
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|