webrtc_m130/webrtc/base/task_queue.h
tommi 0f8b403eb5 Introduce a new constructor to PlatformThread.
The new constructor introduces two new changes:

* Support specifying thread priority at construction time.
  - Moving forward, the SetPriority() method will be removed.
* New thread function type.
  - The new type has 'void' as a return type and a polling loop
    inside PlatformThread, is not used.

The old function type is still supported until all places have been moved over.

In this CL, the first steps towards deprecating the old mechanism are taken
by moving parts of the code that were simple to move, over to the new callback
type.

BUG=webrtc:7187

Review-Url: https://codereview.webrtc.org/2708723003
Cr-Commit-Position: refs/heads/master@{#16779}
2017-02-22 19:22:05 +00:00

290 lines
9.8 KiB
C++

/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_BASE_TASK_QUEUE_H_
#define WEBRTC_BASE_TASK_QUEUE_H_
#include <list>
#include <memory>
#include <unordered_map>
#if defined(WEBRTC_MAC) && !defined(WEBRTC_BUILD_LIBEVENT)
#include <dispatch/dispatch.h>
#endif
#include "webrtc/base/constructormagic.h"
#include "webrtc/base/criticalsection.h"
#if defined(WEBRTC_WIN) || defined(WEBRTC_BUILD_LIBEVENT)
#include "webrtc/base/platform_thread.h"
#endif
#if defined(WEBRTC_BUILD_LIBEVENT)
struct event_base;
struct event;
#endif
namespace rtc {
// Base interface for asynchronously executed tasks.
// The interface basically consists of a single function, Run(), that executes
// on the target queue. For more details see the Run() method and TaskQueue.
class QueuedTask {
public:
QueuedTask() {}
virtual ~QueuedTask() {}
// Main routine that will run when the task is executed on the desired queue.
// The task should return |true| to indicate that it should be deleted or
// |false| to indicate that the queue should consider ownership of the task
// having been transferred. Returning |false| can be useful if a task has
// re-posted itself to a different queue or is otherwise being re-used.
virtual bool Run() = 0;
private:
RTC_DISALLOW_COPY_AND_ASSIGN(QueuedTask);
};
// Simple implementation of QueuedTask for use with rtc::Bind and lambdas.
template <class Closure>
class ClosureTask : public QueuedTask {
public:
explicit ClosureTask(const Closure& closure) : closure_(closure) {}
private:
bool Run() override {
closure_();
return true;
}
Closure closure_;
};
// Extends ClosureTask to also allow specifying cleanup code.
// This is useful when using lambdas if guaranteeing cleanup, even if a task
// was dropped (queue is too full), is required.
template <class Closure, class Cleanup>
class ClosureTaskWithCleanup : public ClosureTask<Closure> {
public:
ClosureTaskWithCleanup(const Closure& closure, Cleanup cleanup)
: ClosureTask<Closure>(closure), cleanup_(cleanup) {}
~ClosureTaskWithCleanup() { cleanup_(); }
private:
Cleanup cleanup_;
};
// Convenience function to construct closures that can be passed directly
// to methods that support std::unique_ptr<QueuedTask> but not template
// based parameters.
template <class Closure>
static std::unique_ptr<QueuedTask> NewClosure(const Closure& closure) {
return std::unique_ptr<QueuedTask>(new ClosureTask<Closure>(closure));
}
template <class Closure, class Cleanup>
static std::unique_ptr<QueuedTask> NewClosure(const Closure& closure,
const Cleanup& cleanup) {
return std::unique_ptr<QueuedTask>(
new ClosureTaskWithCleanup<Closure, Cleanup>(closure, cleanup));
}
// Implements a task queue that asynchronously executes tasks in a way that
// guarantees that they're executed in FIFO order and that tasks never overlap.
// Tasks may always execute on the same worker thread and they may not.
// To DCHECK that tasks are executing on a known task queue, use IsCurrent().
//
// Here are some usage examples:
//
// 1) Asynchronously running a lambda:
//
// class MyClass {
// ...
// TaskQueue queue_("MyQueue");
// };
//
// void MyClass::StartWork() {
// queue_.PostTask([]() { Work(); });
// ...
//
// 2) Doing work asynchronously on a worker queue and providing a notification
// callback on the current queue, when the work has been done:
//
// void MyClass::StartWorkAndLetMeKnowWhenDone(
// std::unique_ptr<QueuedTask> callback) {
// DCHECK(TaskQueue::Current()) << "Need to be running on a queue";
// queue_.PostTaskAndReply([]() { Work(); }, std::move(callback));
// }
// ...
// my_class->StartWorkAndLetMeKnowWhenDone(
// NewClosure([]() { LOG(INFO) << "The work is done!";}));
//
// 3) Posting a custom task on a timer. The task posts itself again after
// every running:
//
// class TimerTask : public QueuedTask {
// public:
// TimerTask() {}
// private:
// bool Run() override {
// ++count_;
// TaskQueue::Current()->PostDelayedTask(
// std::unique_ptr<QueuedTask>(this), 1000);
// // Ownership has been transferred to the next occurance,
// // so return false to prevent from being deleted now.
// return false;
// }
// int count_ = 0;
// };
// ...
// queue_.PostDelayedTask(
// std::unique_ptr<QueuedTask>(new TimerTask()), 1000);
//
// For more examples, see task_queue_unittests.cc.
//
// A note on destruction:
//
// When a TaskQueue is deleted, pending tasks will not be executed but they will
// be deleted. The deletion of tasks may happen asynchronously after the
// TaskQueue itself has been deleted or it may happen synchronously while the
// TaskQueue instance is being deleted. This may vary from one OS to the next
// so assumptions about lifetimes of pending tasks should not be made.
class LOCKABLE TaskQueue {
public:
explicit TaskQueue(const char* queue_name);
// TODO(tommi): Implement move semantics?
~TaskQueue();
static TaskQueue* Current();
// Used for DCHECKing the current queue.
static bool IsCurrent(const char* queue_name);
bool IsCurrent() const;
// TODO(tommi): For better debuggability, implement RTC_FROM_HERE.
// Ownership of the task is passed to PostTask.
void PostTask(std::unique_ptr<QueuedTask> task);
void PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply,
TaskQueue* reply_queue);
void PostTaskAndReply(std::unique_ptr<QueuedTask> task,
std::unique_ptr<QueuedTask> reply);
// Schedules a task to execute a specified number of milliseconds from when
// the call is made. The precision should be considered as "best effort"
// and in some cases, such as on Windows when all high precision timers have
// been used up, can be off by as much as 15 millseconds (although 8 would be
// more likely). This can be mitigated by limiting the use of delayed tasks.
void PostDelayedTask(std::unique_ptr<QueuedTask> task, uint32_t milliseconds);
template <class Closure>
void PostTask(const Closure& closure) {
PostTask(std::unique_ptr<QueuedTask>(new ClosureTask<Closure>(closure)));
}
// See documentation above for performance expectations.
template <class Closure>
void PostDelayedTask(const Closure& closure, uint32_t milliseconds) {
PostDelayedTask(
std::unique_ptr<QueuedTask>(new ClosureTask<Closure>(closure)),
milliseconds);
}
template <class Closure1, class Closure2>
void PostTaskAndReply(const Closure1& task,
const Closure2& reply,
TaskQueue* reply_queue) {
PostTaskAndReply(
std::unique_ptr<QueuedTask>(new ClosureTask<Closure1>(task)),
std::unique_ptr<QueuedTask>(new ClosureTask<Closure2>(reply)),
reply_queue);
}
template <class Closure>
void PostTaskAndReply(std::unique_ptr<QueuedTask> task,
const Closure& reply) {
PostTaskAndReply(std::move(task), std::unique_ptr<QueuedTask>(
new ClosureTask<Closure>(reply)));
}
template <class Closure>
void PostTaskAndReply(const Closure& task,
std::unique_ptr<QueuedTask> reply) {
PostTaskAndReply(
std::unique_ptr<QueuedTask>(new ClosureTask<Closure>(task)),
std::move(reply));
}
template <class Closure1, class Closure2>
void PostTaskAndReply(const Closure1& task, const Closure2& reply) {
PostTaskAndReply(
std::unique_ptr<QueuedTask>(new ClosureTask<Closure1>(task)),
std::unique_ptr<QueuedTask>(new ClosureTask<Closure2>(reply)));
}
private:
#if defined(WEBRTC_BUILD_LIBEVENT)
static void ThreadMain(void* context);
static void OnWakeup(int socket, short flags, void* context); // NOLINT
static void RunTask(int fd, short flags, void* context); // NOLINT
static void RunTimer(int fd, short flags, void* context); // NOLINT
class PostAndReplyTask;
class SetTimerTask;
void PrepareReplyTask(PostAndReplyTask* reply_task);
void ReplyTaskDone(PostAndReplyTask* reply_task);
struct QueueContext;
int wakeup_pipe_in_ = -1;
int wakeup_pipe_out_ = -1;
event_base* event_base_;
std::unique_ptr<event> wakeup_event_;
PlatformThread thread_;
rtc::CriticalSection pending_lock_;
std::list<std::unique_ptr<QueuedTask>> pending_ GUARDED_BY(pending_lock_);
std::list<PostAndReplyTask*> pending_replies_ GUARDED_BY(pending_lock_);
#elif defined(WEBRTC_MAC)
struct QueueContext;
struct TaskContext;
struct PostTaskAndReplyContext;
dispatch_queue_t queue_;
QueueContext* const context_;
#elif defined(WEBRTC_WIN)
class MultimediaTimer;
typedef std::unordered_map<UINT_PTR, std::unique_ptr<QueuedTask>>
DelayedTasks;
static void ThreadMain(void* context);
static bool ProcessQueuedMessages(DelayedTasks* delayed_tasks,
std::vector<MultimediaTimer>* timers);
class WorkerThread : public PlatformThread {
public:
WorkerThread(ThreadRunFunction func, void* obj, const char* thread_name)
: PlatformThread(func, obj, thread_name) {}
bool QueueAPC(PAPCFUNC apc_function, ULONG_PTR data) {
return PlatformThread::QueueAPC(apc_function, data);
}
};
WorkerThread thread_;
#else
#error not supported.
#endif
RTC_DISALLOW_COPY_AND_ASSIGN(TaskQueue);
};
} // namespace rtc
#endif // WEBRTC_BASE_TASK_QUEUE_H_