webrtc_m130/video/encoder_bitrate_adjuster.cc
Henrik Boström 9a5de95af9 Add a flag to control legacy vs spec-compliant scalability mode.
The goal of the VP9 simulcast project is that when `scalability_mode`
is set, multiple encodings are always interpreted as simulcast, even
if VP9 or AV1 is used. This CL makes this so, but only if the flag
"WebRTC-AllowDisablingLegacyScalability" is "/Enabled/". This allows us
to make "SendingThreeEncodings_VP9_Simulcast" EXPECT VP9 simulcast.

When we are ready to ship we will remove the need to use the field
trial, but before we ship this we'll want to revisit if
SvcRateAllocator can be updated to support simulcast. (Today if we use
SvcRateAllocator when VP9 simulcast is used, all encodings except the
first one get bitrate=0, causing the test to fail because media is not
flowing on all layers.) For now, a TODO is added.

Bug: webrtc:14884
Change-Id: Ie20ae748b0c0405162f3a1b015ab94956ef83dae
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/297340
Reviewed-by: Evan Shrubsole <eshr@webrtc.org>
Reviewed-by: Erik Språng <sprang@webrtc.org>
Commit-Queue: Henrik Boström <hbos@webrtc.org>
Reviewed-by: Philip Eliasson <philipel@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#39552}
2023-03-14 12:05:24 +00:00

342 lines
14 KiB
C++

/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video/encoder_bitrate_adjuster.h"
#include <algorithm>
#include <memory>
#include <vector>
#include "rtc_base/experiments/rate_control_settings.h"
#include "rtc_base/logging.h"
#include "rtc_base/time_utils.h"
namespace webrtc {
namespace {
// Helper struct with metadata for a single spatial layer.
struct LayerRateInfo {
double link_utilization_factor = 0.0;
double media_utilization_factor = 0.0;
DataRate target_rate = DataRate::Zero();
DataRate WantedOvershoot() const {
// If there is headroom, allow bitrate to go up to media rate limit.
// Still limit media utilization to 1.0, so we don't overshoot over long
// runs even if we have headroom.
const double max_media_utilization =
std::max(1.0, media_utilization_factor);
if (link_utilization_factor > max_media_utilization) {
return (link_utilization_factor - max_media_utilization) * target_rate;
}
return DataRate::Zero();
}
};
} // namespace
constexpr int64_t EncoderBitrateAdjuster::kWindowSizeMs;
constexpr size_t EncoderBitrateAdjuster::kMinFramesSinceLayoutChange;
constexpr double EncoderBitrateAdjuster::kDefaultUtilizationFactor;
EncoderBitrateAdjuster::EncoderBitrateAdjuster(const VideoCodec& codec_settings)
: utilize_bandwidth_headroom_(RateControlSettings::ParseFromFieldTrials()
.BitrateAdjusterCanUseNetworkHeadroom()),
frames_since_layout_change_(0),
min_bitrates_bps_{} {
// TODO(https://crbug.com/webrtc/14891): If we want to support simulcast of
// SVC streams, EncoderBitrateAdjuster needs to be updated to care about both
// `simulcastStream` and `spatialLayers` at the same time.
if (codec_settings.codecType == VideoCodecType::kVideoCodecVP9 &&
codec_settings.numberOfSimulcastStreams <= 1) {
for (size_t si = 0; si < codec_settings.VP9().numberOfSpatialLayers; ++si) {
if (codec_settings.spatialLayers[si].active) {
min_bitrates_bps_[si] =
std::max(codec_settings.minBitrate * 1000,
codec_settings.spatialLayers[si].minBitrate * 1000);
}
}
} else {
for (size_t si = 0; si < codec_settings.numberOfSimulcastStreams; ++si) {
if (codec_settings.simulcastStream[si].active) {
min_bitrates_bps_[si] =
std::max(codec_settings.minBitrate * 1000,
codec_settings.simulcastStream[si].minBitrate * 1000);
}
}
}
}
EncoderBitrateAdjuster::~EncoderBitrateAdjuster() = default;
VideoBitrateAllocation EncoderBitrateAdjuster::AdjustRateAllocation(
const VideoEncoder::RateControlParameters& rates) {
current_rate_control_parameters_ = rates;
// First check that overshoot detectors exist, and store per simulcast/spatial
// layer how many active temporal layers we have.
size_t active_tls[kMaxSpatialLayers] = {};
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
active_tls[si] = 0;
for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
// Layer is enabled iff it has both positive bitrate and framerate target.
if (rates.bitrate.GetBitrate(si, ti) > 0 &&
current_fps_allocation_[si].size() > ti &&
current_fps_allocation_[si][ti] > 0) {
++active_tls[si];
if (!overshoot_detectors_[si][ti]) {
overshoot_detectors_[si][ti] =
std::make_unique<EncoderOvershootDetector>(kWindowSizeMs);
frames_since_layout_change_ = 0;
}
} else if (overshoot_detectors_[si][ti]) {
// Layer removed, destroy overshoot detector.
overshoot_detectors_[si][ti].reset();
frames_since_layout_change_ = 0;
}
}
}
// Next poll the overshoot detectors and populate the adjusted allocation.
const int64_t now_ms = rtc::TimeMillis();
VideoBitrateAllocation adjusted_allocation;
std::vector<LayerRateInfo> layer_infos;
DataRate wanted_overshoot_sum = DataRate::Zero();
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
layer_infos.emplace_back();
LayerRateInfo& layer_info = layer_infos.back();
layer_info.target_rate =
DataRate::BitsPerSec(rates.bitrate.GetSpatialLayerSum(si));
// Adjustment is done per simulcast/spatial layer only (not per temporal
// layer).
if (frames_since_layout_change_ < kMinFramesSinceLayoutChange) {
layer_info.link_utilization_factor = kDefaultUtilizationFactor;
layer_info.media_utilization_factor = kDefaultUtilizationFactor;
} else if (active_tls[si] == 0 ||
layer_info.target_rate == DataRate::Zero()) {
// No signaled temporal layers, or no bitrate set. Could either be unused
// simulcast/spatial layer or bitrate dynamic mode; pass bitrate through
// without any change.
layer_info.link_utilization_factor = 1.0;
layer_info.media_utilization_factor = 1.0;
} else if (active_tls[si] == 1) {
// A single active temporal layer, this might mean single layer or that
// encoder does not support temporal layers. Merge target bitrates for
// this simulcast/spatial layer.
RTC_DCHECK(overshoot_detectors_[si][0]);
layer_info.link_utilization_factor =
overshoot_detectors_[si][0]
->GetNetworkRateUtilizationFactor(now_ms)
.value_or(kDefaultUtilizationFactor);
layer_info.media_utilization_factor =
overshoot_detectors_[si][0]
->GetMediaRateUtilizationFactor(now_ms)
.value_or(kDefaultUtilizationFactor);
} else if (layer_info.target_rate > DataRate::Zero()) {
// Multiple temporal layers enabled for this simulcast/spatial layer.
// Update rate for each of them and make a weighted average of utilization
// factors, with bitrate fraction used as weight.
// If any layer is missing a utilization factor, fall back to default.
layer_info.link_utilization_factor = 0.0;
layer_info.media_utilization_factor = 0.0;
for (size_t ti = 0; ti < active_tls[si]; ++ti) {
RTC_DCHECK(overshoot_detectors_[si][ti]);
const absl::optional<double> ti_link_utilization_factor =
overshoot_detectors_[si][ti]->GetNetworkRateUtilizationFactor(
now_ms);
const absl::optional<double> ti_media_utilization_factor =
overshoot_detectors_[si][ti]->GetMediaRateUtilizationFactor(now_ms);
if (!ti_link_utilization_factor || !ti_media_utilization_factor) {
layer_info.link_utilization_factor = kDefaultUtilizationFactor;
layer_info.media_utilization_factor = kDefaultUtilizationFactor;
break;
}
const double weight =
static_cast<double>(rates.bitrate.GetBitrate(si, ti)) /
layer_info.target_rate.bps();
layer_info.link_utilization_factor +=
weight * ti_link_utilization_factor.value();
layer_info.media_utilization_factor +=
weight * ti_media_utilization_factor.value();
}
} else {
RTC_DCHECK_NOTREACHED();
}
if (layer_info.link_utilization_factor < 1.0) {
// TODO(sprang): Consider checking underuse and allowing it to cancel some
// potential overuse by other streams.
// Don't boost target bitrate if encoder is under-using.
layer_info.link_utilization_factor = 1.0;
} else {
// Don't reduce encoder target below 50%, in which case the frame dropper
// should kick in instead.
layer_info.link_utilization_factor =
std::min(layer_info.link_utilization_factor, 2.0);
// Keep track of sum of desired overshoot bitrate.
wanted_overshoot_sum += layer_info.WantedOvershoot();
}
}
// Available link headroom that can be used to fill wanted overshoot.
DataRate available_headroom = DataRate::Zero();
if (utilize_bandwidth_headroom_) {
available_headroom = rates.bandwidth_allocation -
DataRate::BitsPerSec(rates.bitrate.get_sum_bps());
}
// All wanted overshoots are satisfied in the same proportion based on
// available headroom.
const double granted_overshoot_ratio =
wanted_overshoot_sum == DataRate::Zero()
? 0.0
: std::min(1.0, available_headroom.bps<double>() /
wanted_overshoot_sum.bps());
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
LayerRateInfo& layer_info = layer_infos[si];
double utilization_factor = layer_info.link_utilization_factor;
DataRate allowed_overshoot =
granted_overshoot_ratio * layer_info.WantedOvershoot();
if (allowed_overshoot > DataRate::Zero()) {
// Pretend the target bitrate is higher by the allowed overshoot.
// Since utilization_factor = actual_bitrate / target_bitrate, it can be
// done by multiplying by old_target_bitrate / new_target_bitrate.
utilization_factor *= layer_info.target_rate.bps<double>() /
(allowed_overshoot.bps<double>() +
layer_info.target_rate.bps<double>());
}
if (min_bitrates_bps_[si] > 0 &&
layer_info.target_rate > DataRate::Zero() &&
DataRate::BitsPerSec(min_bitrates_bps_[si]) < layer_info.target_rate) {
// Make sure rate adjuster doesn't push target bitrate below minimum.
utilization_factor =
std::min(utilization_factor, layer_info.target_rate.bps<double>() /
min_bitrates_bps_[si]);
}
if (layer_info.target_rate > DataRate::Zero()) {
RTC_LOG(LS_VERBOSE)
<< "Utilization factors for simulcast/spatial index " << si
<< ": link = " << layer_info.link_utilization_factor
<< ", media = " << layer_info.media_utilization_factor
<< ", wanted overshoot = " << layer_info.WantedOvershoot().bps()
<< " bps, available headroom = " << available_headroom.bps()
<< " bps, total utilization factor = " << utilization_factor;
}
// Populate the adjusted allocation with determined utilization factor.
if (active_tls[si] == 1 &&
layer_info.target_rate >
DataRate::BitsPerSec(rates.bitrate.GetBitrate(si, 0))) {
// Bitrate allocation indicates temporal layer usage, but encoder
// does not seem to support it. Pipe all bitrate into a single
// overshoot detector.
uint32_t adjusted_layer_bitrate_bps =
std::min(static_cast<uint32_t>(
layer_info.target_rate.bps() / utilization_factor + 0.5),
layer_info.target_rate.bps<uint32_t>());
adjusted_allocation.SetBitrate(si, 0, adjusted_layer_bitrate_bps);
} else {
for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
if (rates.bitrate.HasBitrate(si, ti)) {
uint32_t adjusted_layer_bitrate_bps = std::min(
static_cast<uint32_t>(
rates.bitrate.GetBitrate(si, ti) / utilization_factor + 0.5),
rates.bitrate.GetBitrate(si, ti));
adjusted_allocation.SetBitrate(si, ti, adjusted_layer_bitrate_bps);
}
}
}
// In case of rounding errors, add bitrate to TL0 until min bitrate
// constraint has been met.
const uint32_t adjusted_spatial_layer_sum =
adjusted_allocation.GetSpatialLayerSum(si);
if (layer_info.target_rate > DataRate::Zero() &&
adjusted_spatial_layer_sum < min_bitrates_bps_[si]) {
adjusted_allocation.SetBitrate(si, 0,
adjusted_allocation.GetBitrate(si, 0) +
min_bitrates_bps_[si] -
adjusted_spatial_layer_sum);
}
// Update all detectors with the new adjusted bitrate targets.
for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
const uint32_t layer_bitrate_bps = adjusted_allocation.GetBitrate(si, ti);
// Overshoot detector may not exist, eg for ScreenshareLayers case.
if (layer_bitrate_bps > 0 && overshoot_detectors_[si][ti]) {
// Number of frames in this layer alone is not cumulative, so
// subtract fps from any low temporal layer.
const double fps_fraction =
static_cast<double>(
current_fps_allocation_[si][ti] -
(ti == 0 ? 0 : current_fps_allocation_[si][ti - 1])) /
VideoEncoder::EncoderInfo::kMaxFramerateFraction;
if (fps_fraction <= 0.0) {
RTC_LOG(LS_WARNING)
<< "Encoder config has temporal layer with non-zero bitrate "
"allocation but zero framerate allocation.";
continue;
}
overshoot_detectors_[si][ti]->SetTargetRate(
DataRate::BitsPerSec(layer_bitrate_bps),
fps_fraction * rates.framerate_fps, now_ms);
}
}
}
// Since no simulcast/spatial layers or streams are toggled by the adjustment
// bw-limited flag stays the same.
adjusted_allocation.set_bw_limited(rates.bitrate.is_bw_limited());
return adjusted_allocation;
}
void EncoderBitrateAdjuster::OnEncoderInfo(
const VideoEncoder::EncoderInfo& encoder_info) {
// Copy allocation into current state and re-allocate.
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
current_fps_allocation_[si] = encoder_info.fps_allocation[si];
}
// Trigger re-allocation so that overshoot detectors have correct targets.
AdjustRateAllocation(current_rate_control_parameters_);
}
void EncoderBitrateAdjuster::OnEncodedFrame(DataSize size,
int stream_index,
int temporal_index) {
++frames_since_layout_change_;
// Detectors may not exist, for instance if ScreenshareLayers is used.
auto& detector = overshoot_detectors_[stream_index][temporal_index];
if (detector) {
detector->OnEncodedFrame(size.bytes(), rtc::TimeMillis());
}
}
void EncoderBitrateAdjuster::Reset() {
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
overshoot_detectors_[si][ti].reset();
}
}
// Call AdjustRateAllocation() with the last know bitrate allocation, so that
// the appropriate overuse detectors are immediately re-created.
AdjustRateAllocation(current_rate_control_parameters_);
}
} // namespace webrtc