/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/base/constructormagic.h" #include "webrtc/modules/pacing/paced_sender.h" #include "webrtc/modules/congestion_controller/delay_based_bwe.h" #include "webrtc/modules/congestion_controller/delay_based_bwe_unittest_helper.h" #include "webrtc/system_wrappers/include/clock.h" namespace webrtc { namespace { constexpr int kNumProbes = 5; } // namespace TEST_F(DelayBasedBweTest, ProbeDetection) { int64_t now_ms = clock_.TimeInMilliseconds(); uint16_t seq_num = 0; // First burst sent at 8 * 1000 / 10 = 800 kbps. for (int i = 0; i < kNumProbes; ++i) { clock_.AdvanceTimeMilliseconds(10); now_ms = clock_.TimeInMilliseconds(); IncomingFeedback(now_ms, now_ms, seq_num++, 1000, 0); } EXPECT_TRUE(bitrate_observer_->updated()); // Second burst sent at 8 * 1000 / 5 = 1600 kbps. for (int i = 0; i < kNumProbes; ++i) { clock_.AdvanceTimeMilliseconds(5); now_ms = clock_.TimeInMilliseconds(); IncomingFeedback(now_ms, now_ms, seq_num++, 1000, 1); } EXPECT_TRUE(bitrate_observer_->updated()); EXPECT_GT(bitrate_observer_->latest_bitrate(), 1500000u); } TEST_F(DelayBasedBweTest, ProbeDetectionNonPacedPackets) { int64_t now_ms = clock_.TimeInMilliseconds(); uint16_t seq_num = 0; // First burst sent at 8 * 1000 / 10 = 800 kbps, but with every other packet // not being paced which could mess things up. for (int i = 0; i < kNumProbes; ++i) { clock_.AdvanceTimeMilliseconds(5); now_ms = clock_.TimeInMilliseconds(); IncomingFeedback(now_ms, now_ms, seq_num++, 1000, 0); // Non-paced packet, arriving 5 ms after. clock_.AdvanceTimeMilliseconds(5); IncomingFeedback(now_ms, now_ms, seq_num++, PacedSender::kMinProbePacketSize + 1, PacketInfo::kNotAProbe); } EXPECT_TRUE(bitrate_observer_->updated()); EXPECT_GT(bitrate_observer_->latest_bitrate(), 800000u); } // Packets will require 5 ms to be transmitted to the receiver, causing packets // of the second probe to be dispersed. TEST_F(DelayBasedBweTest, ProbeDetectionTooHighBitrate) { int64_t now_ms = clock_.TimeInMilliseconds(); int64_t send_time_ms = 0; uint16_t seq_num = 0; // First burst sent at 8 * 1000 / 10 = 800 kbps. for (int i = 0; i < kNumProbes; ++i) { clock_.AdvanceTimeMilliseconds(10); now_ms = clock_.TimeInMilliseconds(); send_time_ms += 10; IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 0); } // Second burst sent at 8 * 1000 / 5 = 1600 kbps, arriving at 8 * 1000 / 8 = // 1000 kbps. for (int i = 0; i < kNumProbes; ++i) { clock_.AdvanceTimeMilliseconds(8); now_ms = clock_.TimeInMilliseconds(); send_time_ms += 5; IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 1); } EXPECT_TRUE(bitrate_observer_->updated()); EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 800000u, 10000u); } TEST_F(DelayBasedBweTest, ProbeDetectionSlightlyFasterArrival) { int64_t now_ms = clock_.TimeInMilliseconds(); uint16_t seq_num = 0; // First burst sent at 8 * 1000 / 10 = 800 kbps. // Arriving at 8 * 1000 / 5 = 1600 kbps. int64_t send_time_ms = 0; for (int i = 0; i < kNumProbes; ++i) { clock_.AdvanceTimeMilliseconds(5); send_time_ms += 10; now_ms = clock_.TimeInMilliseconds(); IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 23); } EXPECT_TRUE(bitrate_observer_->updated()); EXPECT_GT(bitrate_observer_->latest_bitrate(), 800000u); } TEST_F(DelayBasedBweTest, ProbeDetectionFasterArrival) { int64_t now_ms = clock_.TimeInMilliseconds(); uint16_t seq_num = 0; // First burst sent at 8 * 1000 / 10 = 800 kbps. // Arriving at 8 * 1000 / 5 = 1600 kbps. int64_t send_time_ms = 0; for (int i = 0; i < kNumProbes; ++i) { clock_.AdvanceTimeMilliseconds(1); send_time_ms += 10; now_ms = clock_.TimeInMilliseconds(); IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 0); } EXPECT_FALSE(bitrate_observer_->updated()); } TEST_F(DelayBasedBweTest, ProbeDetectionSlowerArrival) { int64_t now_ms = clock_.TimeInMilliseconds(); uint16_t seq_num = 0; // First burst sent at 8 * 1000 / 5 = 1600 kbps. // Arriving at 8 * 1000 / 7 = 1142 kbps. int64_t send_time_ms = 0; for (int i = 0; i < kNumProbes; ++i) { clock_.AdvanceTimeMilliseconds(7); send_time_ms += 5; now_ms = clock_.TimeInMilliseconds(); IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 1); } EXPECT_TRUE(bitrate_observer_->updated()); EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 1140000u, 10000u); } TEST_F(DelayBasedBweTest, ProbeDetectionSlowerArrivalHighBitrate) { int64_t now_ms = clock_.TimeInMilliseconds(); uint16_t seq_num = 0; // Burst sent at 8 * 1000 / 1 = 8000 kbps. // Arriving at 8 * 1000 / 2 = 4000 kbps. int64_t send_time_ms = 0; for (int i = 0; i < kNumProbes; ++i) { clock_.AdvanceTimeMilliseconds(2); send_time_ms += 1; now_ms = clock_.TimeInMilliseconds(); IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 1); } EXPECT_TRUE(bitrate_observer_->updated()); EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 4000000u, 10000u); } TEST_F(DelayBasedBweTest, ProbingIgnoresSmallPackets) { int64_t now_ms = clock_.TimeInMilliseconds(); uint16_t seq_num = 0; // Probing with 200 bytes every 10 ms, should be ignored by the probe // detection. for (int i = 0; i < kNumProbes; ++i) { clock_.AdvanceTimeMilliseconds(10); now_ms = clock_.TimeInMilliseconds(); IncomingFeedback(now_ms, now_ms, seq_num++, PacedSender::kMinProbePacketSize, 1); } EXPECT_FALSE(bitrate_observer_->updated()); // Followed by a probe with 1000 bytes packets, should be detected as a // probe. for (int i = 0; i < kNumProbes; ++i) { clock_.AdvanceTimeMilliseconds(10); now_ms = clock_.TimeInMilliseconds(); IncomingFeedback(now_ms, now_ms, seq_num++, 1000, 1); } // Wait long enough so that we can call Process again. clock_.AdvanceTimeMilliseconds(1000); EXPECT_TRUE(bitrate_observer_->updated()); EXPECT_NEAR(bitrate_observer_->latest_bitrate(), 800000u, 10000u); } TEST_F(DelayBasedBweTest, InitialBehavior) { InitialBehaviorTestHelper(674840); } TEST_F(DelayBasedBweTest, RateIncreaseReordering) { RateIncreaseReorderingTestHelper(674840); } TEST_F(DelayBasedBweTest, RateIncreaseRtpTimestamps) { RateIncreaseRtpTimestampsTestHelper(1240); } TEST_F(DelayBasedBweTest, CapacityDropOneStream) { CapacityDropTestHelper(1, false, 633, 0); } TEST_F(DelayBasedBweTest, CapacityDropPosOffsetChange) { CapacityDropTestHelper(1, false, 200, 30000); } TEST_F(DelayBasedBweTest, CapacityDropNegOffsetChange) { CapacityDropTestHelper(1, false, 733, -30000); } TEST_F(DelayBasedBweTest, CapacityDropOneStreamWrap) { CapacityDropTestHelper(1, true, 633, 0); } TEST_F(DelayBasedBweTest, CapacityDropTwoStreamsWrap) { CapacityDropTestHelper(2, true, 567, 0); } TEST_F(DelayBasedBweTest, CapacityDropThreeStreamsWrap) { CapacityDropTestHelper(3, true, 633, 0); } TEST_F(DelayBasedBweTest, CapacityDropThirteenStreamsWrap) { CapacityDropTestHelper(13, true, 733, 0); } TEST_F(DelayBasedBweTest, CapacityDropNineteenStreamsWrap) { CapacityDropTestHelper(19, true, 667, 0); } TEST_F(DelayBasedBweTest, CapacityDropThirtyStreamsWrap) { CapacityDropTestHelper(30, true, 667, 0); } TEST_F(DelayBasedBweTest, TestTimestampGrouping) { TestTimestampGroupingTestHelper(); } TEST_F(DelayBasedBweTest, TestShortTimeoutAndWrap) { // Simulate a client leaving and rejoining the call after 35 seconds. This // will make abs send time wrap, so if streams aren't timed out properly // the next 30 seconds of packets will be out of order. TestWrappingHelper(35); } TEST_F(DelayBasedBweTest, TestLongTimeoutAndWrap) { // Simulate a client leaving and rejoining the call after some multiple of // 64 seconds later. This will cause a zero difference in abs send times due // to the wrap, but a big difference in arrival time, if streams aren't // properly timed out. TestWrappingHelper(10 * 64); } } // namespace webrtc