/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/congestion_controller/delay_based_bwe.h" #include #include #include "webrtc/base/checks.h" #include "webrtc/base/constructormagic.h" #include "webrtc/base/logging.h" #include "webrtc/base/thread_annotations.h" #include "webrtc/modules/pacing/paced_sender.h" #include "webrtc/modules/remote_bitrate_estimator/include/remote_bitrate_estimator.h" #include "webrtc/system_wrappers/include/critical_section_wrapper.h" #include "webrtc/system_wrappers/include/metrics.h" #include "webrtc/typedefs.h" namespace { enum { kTimestampGroupLengthMs = 5, kAbsSendTimeFraction = 18, kAbsSendTimeInterArrivalUpshift = 8, kInterArrivalShift = kAbsSendTimeFraction + kAbsSendTimeInterArrivalUpshift, kInitialProbingIntervalMs = 2000, kMinClusterSize = 4, kMaxProbePackets = 15, kExpectedNumberOfProbes = 3 }; static const double kTimestampToMs = 1000.0 / static_cast(1 << kInterArrivalShift); template std::vector Keys(const std::map& map) { std::vector keys; keys.reserve(map.size()); for (typename std::map::const_iterator it = map.begin(); it != map.end(); ++it) { keys.push_back(it->first); } return keys; } uint32_t ConvertMsTo24Bits(int64_t time_ms) { uint32_t time_24_bits = static_cast( ((static_cast(time_ms) << kAbsSendTimeFraction) + 500) / 1000) & 0x00FFFFFF; return time_24_bits; } } // namespace namespace webrtc { void DelayBasedBwe::AddCluster(std::list* clusters, Cluster* cluster) { cluster->send_mean_ms /= static_cast(cluster->count); cluster->recv_mean_ms /= static_cast(cluster->count); cluster->mean_size /= cluster->count; clusters->push_back(*cluster); } DelayBasedBwe::DelayBasedBwe(RemoteBitrateObserver* observer, Clock* clock) : clock_(clock), observer_(observer), inter_arrival_(), estimator_(), detector_(OverUseDetectorOptions()), incoming_bitrate_(kBitrateWindowMs, 8000), total_probes_received_(0), first_packet_time_ms_(-1), last_update_ms_(-1), uma_recorded_(false) { RTC_DCHECK(observer_); // NOTE! The BitrateEstimatorTest relies on this EXACT log line. LOG(LS_INFO) << "RemoteBitrateEstimatorAbsSendTime: Instantiating."; network_thread_.DetachFromThread(); } void DelayBasedBwe::ComputeClusters(std::list* clusters) const { Cluster current; int64_t prev_send_time = -1; int64_t prev_recv_time = -1; int last_probe_cluster_id = -1; for (std::list::const_iterator it = probes_.begin(); it != probes_.end(); ++it) { if (last_probe_cluster_id == -1) last_probe_cluster_id = it->cluster_id; if (prev_send_time >= 0) { int send_delta_ms = it->send_time_ms - prev_send_time; int recv_delta_ms = it->recv_time_ms - prev_recv_time; if (send_delta_ms >= 1 && recv_delta_ms >= 1) { ++current.num_above_min_delta; } if (it->cluster_id != last_probe_cluster_id) { if (current.count >= kMinClusterSize) AddCluster(clusters, ¤t); current = Cluster(); } current.send_mean_ms += send_delta_ms; current.recv_mean_ms += recv_delta_ms; current.mean_size += it->payload_size; ++current.count; last_probe_cluster_id = it->cluster_id; } prev_send_time = it->send_time_ms; prev_recv_time = it->recv_time_ms; } if (current.count >= kMinClusterSize) AddCluster(clusters, ¤t); } std::list::const_iterator DelayBasedBwe::FindBestProbe( const std::list& clusters) const { int highest_probe_bitrate_bps = 0; std::list::const_iterator best_it = clusters.end(); for (std::list::const_iterator it = clusters.begin(); it != clusters.end(); ++it) { if (it->send_mean_ms == 0 || it->recv_mean_ms == 0) continue; int send_bitrate_bps = it->mean_size * 8 * 1000 / it->send_mean_ms; int recv_bitrate_bps = it->mean_size * 8 * 1000 / it->recv_mean_ms; if (it->num_above_min_delta > it->count / 2 && (it->recv_mean_ms - it->send_mean_ms <= 2.0f && it->send_mean_ms - it->recv_mean_ms <= 5.0f)) { int probe_bitrate_bps = std::min(it->GetSendBitrateBps(), it->GetRecvBitrateBps()); if (probe_bitrate_bps > highest_probe_bitrate_bps) { highest_probe_bitrate_bps = probe_bitrate_bps; best_it = it; } } else { LOG(LS_INFO) << "Probe failed, sent at " << send_bitrate_bps << " bps, received at " << recv_bitrate_bps << " bps. Mean send delta: " << it->send_mean_ms << " ms, mean recv delta: " << it->recv_mean_ms << " ms, num probes: " << it->count; break; } } return best_it; } DelayBasedBwe::ProbeResult DelayBasedBwe::ProcessClusters(int64_t now_ms) { std::list clusters; ComputeClusters(&clusters); if (clusters.empty()) { // If we reach the max number of probe packets and still have no clusters, // we will remove the oldest one. if (probes_.size() >= kMaxProbePackets) probes_.pop_front(); return ProbeResult::kNoUpdate; } std::list::const_iterator best_it = FindBestProbe(clusters); if (best_it != clusters.end()) { int probe_bitrate_bps = std::min(best_it->GetSendBitrateBps(), best_it->GetRecvBitrateBps()); // Make sure that a probe sent on a lower bitrate than our estimate can't // reduce the estimate. if (IsBitrateImproving(probe_bitrate_bps)) { LOG(LS_INFO) << "Probe successful, sent at " << best_it->GetSendBitrateBps() << " bps, received at " << best_it->GetRecvBitrateBps() << " bps. Mean send delta: " << best_it->send_mean_ms << " ms, mean recv delta: " << best_it->recv_mean_ms << " ms, num probes: " << best_it->count; remote_rate_.SetEstimate(probe_bitrate_bps, now_ms); return ProbeResult::kBitrateUpdated; } } // Not probing and received non-probe packet, or finished with current set // of probes. if (clusters.size() >= kExpectedNumberOfProbes) probes_.clear(); return ProbeResult::kNoUpdate; } bool DelayBasedBwe::IsBitrateImproving(int new_bitrate_bps) const { bool initial_probe = !remote_rate_.ValidEstimate() && new_bitrate_bps > 0; bool bitrate_above_estimate = remote_rate_.ValidEstimate() && new_bitrate_bps > static_cast(remote_rate_.LatestEstimate()); return initial_probe || bitrate_above_estimate; } void DelayBasedBwe::IncomingPacketFeedbackVector( const std::vector& packet_feedback_vector) { RTC_DCHECK(network_thread_.CalledOnValidThread()); if (!uma_recorded_) { RTC_LOGGED_HISTOGRAM_ENUMERATION(kBweTypeHistogram, BweNames::kSendSideTransportSeqNum, BweNames::kBweNamesMax); uma_recorded_ = true; } for (const auto& packet_info : packet_feedback_vector) { IncomingPacketInfo(packet_info.arrival_time_ms, ConvertMsTo24Bits(packet_info.send_time_ms), packet_info.payload_size, 0, packet_info.probe_cluster_id); } } void DelayBasedBwe::IncomingPacketInfo(int64_t arrival_time_ms, uint32_t send_time_24bits, size_t payload_size, uint32_t ssrc, int probe_cluster_id) { assert(send_time_24bits < (1ul << 24)); // Shift up send time to use the full 32 bits that inter_arrival works with, // so wrapping works properly. uint32_t timestamp = send_time_24bits << kAbsSendTimeInterArrivalUpshift; int64_t send_time_ms = static_cast(timestamp) * kTimestampToMs; int64_t now_ms = clock_->TimeInMilliseconds(); // TODO(holmer): SSRCs are only needed for REMB, should be broken out from // here. incoming_bitrate_.Update(payload_size, arrival_time_ms); if (first_packet_time_ms_ == -1) first_packet_time_ms_ = now_ms; uint32_t ts_delta = 0; int64_t t_delta = 0; int size_delta = 0; bool update_estimate = false; uint32_t target_bitrate_bps = 0; std::vector ssrcs; { rtc::CritScope lock(&crit_); TimeoutStreams(now_ms); RTC_DCHECK(inter_arrival_.get()); RTC_DCHECK(estimator_.get()); ssrcs_[ssrc] = now_ms; // For now only try to detect probes while we don't have a valid estimate, // and make sure the packet was paced. We currently assume that only packets // larger than 200 bytes are paced by the sender. if (probe_cluster_id != PacketInfo::kNotAProbe && payload_size > PacedSender::kMinProbePacketSize && (!remote_rate_.ValidEstimate() || now_ms - first_packet_time_ms_ < kInitialProbingIntervalMs)) { // TODO(holmer): Use a map instead to get correct order? if (total_probes_received_ < kMaxProbePackets) { int send_delta_ms = -1; int recv_delta_ms = -1; if (!probes_.empty()) { send_delta_ms = send_time_ms - probes_.back().send_time_ms; recv_delta_ms = arrival_time_ms - probes_.back().recv_time_ms; } LOG(LS_INFO) << "Probe packet received: send time=" << send_time_ms << " ms, recv time=" << arrival_time_ms << " ms, send delta=" << send_delta_ms << " ms, recv delta=" << recv_delta_ms << " ms."; } probes_.push_back( Probe(send_time_ms, arrival_time_ms, payload_size, probe_cluster_id)); ++total_probes_received_; // Make sure that a probe which updated the bitrate immediately has an // effect by calling the OnReceiveBitrateChanged callback. if (ProcessClusters(now_ms) == ProbeResult::kBitrateUpdated) update_estimate = true; } if (inter_arrival_->ComputeDeltas(timestamp, arrival_time_ms, now_ms, payload_size, &ts_delta, &t_delta, &size_delta)) { double ts_delta_ms = (1000.0 * ts_delta) / (1 << kInterArrivalShift); estimator_->Update(t_delta, ts_delta_ms, size_delta, detector_.State()); detector_.Detect(estimator_->offset(), ts_delta_ms, estimator_->num_of_deltas(), arrival_time_ms); } if (!update_estimate) { // Check if it's time for a periodic update or if we should update because // of an over-use. if (last_update_ms_ == -1 || now_ms - last_update_ms_ > remote_rate_.GetFeedbackInterval()) { update_estimate = true; } else if (detector_.State() == kBwOverusing) { rtc::Optional incoming_rate = incoming_bitrate_.Rate(arrival_time_ms); if (incoming_rate && remote_rate_.TimeToReduceFurther(now_ms, *incoming_rate)) { update_estimate = true; } } } if (update_estimate) { // The first overuse should immediately trigger a new estimate. // We also have to update the estimate immediately if we are overusing // and the target bitrate is too high compared to what we are receiving. const RateControlInput input(detector_.State(), incoming_bitrate_.Rate(arrival_time_ms), estimator_->var_noise()); remote_rate_.Update(&input, now_ms); target_bitrate_bps = remote_rate_.UpdateBandwidthEstimate(now_ms); update_estimate = remote_rate_.ValidEstimate(); ssrcs = Keys(ssrcs_); } } if (update_estimate) { last_update_ms_ = now_ms; observer_->OnReceiveBitrateChanged(ssrcs, target_bitrate_bps); } } void DelayBasedBwe::Process() {} int64_t DelayBasedBwe::TimeUntilNextProcess() { const int64_t kDisabledModuleTime = 1000; return kDisabledModuleTime; } void DelayBasedBwe::TimeoutStreams(int64_t now_ms) { for (Ssrcs::iterator it = ssrcs_.begin(); it != ssrcs_.end();) { if ((now_ms - it->second) > kStreamTimeOutMs) { ssrcs_.erase(it++); } else { ++it; } } if (ssrcs_.empty()) { // We can't update the estimate if we don't have any active streams. inter_arrival_.reset( new InterArrival((kTimestampGroupLengthMs << kInterArrivalShift) / 1000, kTimestampToMs, true)); estimator_.reset(new OveruseEstimator(OverUseDetectorOptions())); // We deliberately don't reset the first_packet_time_ms_ here for now since // we only probe for bandwidth in the beginning of a call right now. } } void DelayBasedBwe::OnRttUpdate(int64_t avg_rtt_ms, int64_t max_rtt_ms) { rtc::CritScope lock(&crit_); remote_rate_.SetRtt(avg_rtt_ms); } void DelayBasedBwe::RemoveStream(uint32_t ssrc) { rtc::CritScope lock(&crit_); ssrcs_.erase(ssrc); } bool DelayBasedBwe::LatestEstimate(std::vector* ssrcs, uint32_t* bitrate_bps) const { // Currently accessed from both the process thread (see // ModuleRtpRtcpImpl::Process()) and the configuration thread (see // Call::GetStats()). Should in the future only be accessed from a single // thread. RTC_DCHECK(ssrcs); RTC_DCHECK(bitrate_bps); rtc::CritScope lock(&crit_); if (!remote_rate_.ValidEstimate()) { return false; } *ssrcs = Keys(ssrcs_); if (ssrcs_.empty()) { *bitrate_bps = 0; } else { *bitrate_bps = remote_rate_.LatestEstimate(); } return true; } void DelayBasedBwe::SetMinBitrate(int min_bitrate_bps) { // Called from both the configuration thread and the network thread. Shouldn't // be called from the network thread in the future. rtc::CritScope lock(&crit_); remote_rate_.SetMinBitrate(min_bitrate_bps); } } // namespace webrtc