/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/modules/pacing/include/paced_sender.h" #include "webrtc/system_wrappers/interface/clock.h" using testing::_; using testing::Return; namespace webrtc { namespace test { static const int kTargetBitrate = 800; static const float kPaceMultiplier = 1.5f; class MockPacedSenderCallback : public PacedSender::Callback { public: MOCK_METHOD4(TimeToSendPacket, bool(uint32_t ssrc, uint16_t sequence_number, int64_t capture_time_ms, bool retransmission)); MOCK_METHOD1(TimeToSendPadding, size_t(size_t bytes)); }; class PacedSenderPadding : public PacedSender::Callback { public: PacedSenderPadding() : padding_sent_(0) {} bool TimeToSendPacket(uint32_t ssrc, uint16_t sequence_number, int64_t capture_time_ms, bool retransmission) { return true; } size_t TimeToSendPadding(size_t bytes) { const size_t kPaddingPacketSize = 224; size_t num_packets = (bytes + kPaddingPacketSize - 1) / kPaddingPacketSize; padding_sent_ += kPaddingPacketSize * num_packets; return kPaddingPacketSize * num_packets; } size_t padding_sent() { return padding_sent_; } private: size_t padding_sent_; }; class PacedSenderProbing : public PacedSender::Callback { public: PacedSenderProbing(const std::list& expected_deltas, Clock* clock) : prev_packet_time_ms_(-1), expected_deltas_(expected_deltas), packets_sent_(0), clock_(clock) {} bool TimeToSendPacket(uint32_t ssrc, uint16_t sequence_number, int64_t capture_time_ms, bool retransmission) { ++packets_sent_; EXPECT_FALSE(expected_deltas_.empty()); if (expected_deltas_.empty()) return false; int64_t now_ms = clock_->TimeInMilliseconds(); if (prev_packet_time_ms_ >= 0) { EXPECT_EQ(expected_deltas_.front(), now_ms - prev_packet_time_ms_); expected_deltas_.pop_front(); } prev_packet_time_ms_ = now_ms; return true; } size_t TimeToSendPadding(size_t bytes) { EXPECT_TRUE(false); return bytes; } int packets_sent() const { return packets_sent_; } private: int64_t prev_packet_time_ms_; std::list expected_deltas_; int packets_sent_; Clock* clock_; }; class PacedSenderTest : public ::testing::Test { protected: PacedSenderTest() : clock_(123456) { srand(0); // Need to initialize PacedSender after we initialize clock. send_bucket_.reset(new PacedSender(&clock_, &callback_, kTargetBitrate, kPaceMultiplier * kTargetBitrate, 0)); } void SendAndExpectPacket(PacedSender::Priority priority, uint32_t ssrc, uint16_t sequence_number, int64_t capture_time_ms, size_t size, bool retransmission) { EXPECT_FALSE(send_bucket_->SendPacket(priority, ssrc, sequence_number, capture_time_ms, size, retransmission)); EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number, capture_time_ms, false)) .Times(1) .WillRepeatedly(Return(true)); } SimulatedClock clock_; MockPacedSenderCallback callback_; scoped_ptr send_bucket_; }; TEST_F(PacedSenderTest, QueuePacket) { uint32_t ssrc = 12345; uint16_t sequence_number = 1234; // Due to the multiplicative factor we can send 3 packets not 2 packets. SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false); int64_t queued_packet_timestamp = clock_.TimeInMilliseconds(); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number, queued_packet_timestamp, 250, false)); send_bucket_->Process(); EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0); clock_.AdvanceTimeMilliseconds(4); EXPECT_EQ(1, send_bucket_->TimeUntilNextProcess()); clock_.AdvanceTimeMilliseconds(1); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_CALL( callback_, TimeToSendPacket(ssrc, sequence_number++, queued_packet_timestamp, false)) .Times(1) .WillRepeatedly(Return(true)); send_bucket_->Process(); sequence_number++; SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false)); send_bucket_->Process(); } TEST_F(PacedSenderTest, PaceQueuedPackets) { uint32_t ssrc = 12345; uint16_t sequence_number = 1234; // Due to the multiplicative factor we can send 3 packets not 2 packets. for (int i = 0; i < 3; ++i) { SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false); } for (int j = 0; j < 30; ++j) { EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false)); } send_bucket_->Process(); EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0); for (int k = 0; k < 10; ++k) { EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); clock_.AdvanceTimeMilliseconds(5); EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, _, false)) .Times(3) .WillRepeatedly(Return(true)); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); } EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); clock_.AdvanceTimeMilliseconds(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number, clock_.TimeInMilliseconds(), 250, false)); send_bucket_->Process(); } TEST_F(PacedSenderTest, PaceQueuedPacketsWithDuplicates) { uint32_t ssrc = 12345; uint16_t sequence_number = 1234; uint16_t queued_sequence_number; // Due to the multiplicative factor we can send 3 packets not 2 packets. for (int i = 0; i < 3; ++i) { SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false); } queued_sequence_number = sequence_number; for (int j = 0; j < 30; ++j) { // Send in duplicate packets. EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number, clock_.TimeInMilliseconds(), 250, false)); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false)); } EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0); send_bucket_->Process(); for (int k = 0; k < 10; ++k) { EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); clock_.AdvanceTimeMilliseconds(5); for (int i = 0; i < 3; ++i) { EXPECT_CALL(callback_, TimeToSendPacket(ssrc, queued_sequence_number++, _, false)) .Times(1) .WillRepeatedly(Return(true)); } EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); } EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); clock_.AdvanceTimeMilliseconds(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false)); send_bucket_->Process(); } TEST_F(PacedSenderTest, CanQueuePacketsWithSameSequenceNumberOnDifferentSsrcs) { uint32_t ssrc = 12345; uint16_t sequence_number = 1234; SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number, clock_.TimeInMilliseconds(), 250, false); // Expect packet on second ssrc to be queued and sent as well. SendAndExpectPacket(PacedSender::kNormalPriority, ssrc + 1, sequence_number, clock_.TimeInMilliseconds(), 250, false); clock_.AdvanceTimeMilliseconds(1000); send_bucket_->Process(); } TEST_F(PacedSenderTest, Padding) { uint32_t ssrc = 12345; uint16_t sequence_number = 1234; send_bucket_->UpdateBitrate( kTargetBitrate, kPaceMultiplier * kTargetBitrate, kTargetBitrate); // Due to the multiplicative factor we can send 3 packets not 2 packets. SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), 250, false); // No padding is expected since we have sent too much already. EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0); EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); clock_.AdvanceTimeMilliseconds(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); // 5 milliseconds later we have enough budget to send some padding. EXPECT_CALL(callback_, TimeToSendPadding(250)).Times(1). WillOnce(Return(250)); EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); clock_.AdvanceTimeMilliseconds(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); } TEST_F(PacedSenderTest, NoPaddingWhenDisabled) { send_bucket_->SetStatus(false); send_bucket_->UpdateBitrate( kTargetBitrate, kPaceMultiplier * kTargetBitrate, kTargetBitrate); // No padding is expected since the pacer is disabled. EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0); EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); clock_.AdvanceTimeMilliseconds(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0); EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); clock_.AdvanceTimeMilliseconds(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); } TEST_F(PacedSenderTest, VerifyPaddingUpToBitrate) { uint32_t ssrc = 12345; uint16_t sequence_number = 1234; int64_t capture_time_ms = 56789; const int kTimeStep = 5; const int64_t kBitrateWindow = 100; send_bucket_->UpdateBitrate( kTargetBitrate, kPaceMultiplier * kTargetBitrate, kTargetBitrate); int64_t start_time = clock_.TimeInMilliseconds(); while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) { SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, 250, false); clock_.AdvanceTimeMilliseconds(kTimeStep); EXPECT_CALL(callback_, TimeToSendPadding(250)).Times(1). WillOnce(Return(250)); send_bucket_->Process(); } } TEST_F(PacedSenderTest, VerifyAverageBitrateVaryingMediaPayload) { uint32_t ssrc = 12345; uint16_t sequence_number = 1234; int64_t capture_time_ms = 56789; const int kTimeStep = 5; const int64_t kBitrateWindow = 10000; PacedSenderPadding callback; send_bucket_.reset(new PacedSender( &clock_, &callback, kTargetBitrate, kPaceMultiplier * kTargetBitrate, 0)); send_bucket_->UpdateBitrate( kTargetBitrate, kPaceMultiplier * kTargetBitrate, kTargetBitrate); int64_t start_time = clock_.TimeInMilliseconds(); size_t media_bytes = 0; while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) { size_t media_payload = rand() % 100 + 200; // [200, 300] bytes. EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, media_payload, false)); media_bytes += media_payload; clock_.AdvanceTimeMilliseconds(kTimeStep); send_bucket_->Process(); } EXPECT_NEAR(kTargetBitrate, static_cast(8 * (media_bytes + callback.padding_sent()) / kBitrateWindow), 1); } TEST_F(PacedSenderTest, Priority) { uint32_t ssrc_low_priority = 12345; uint32_t ssrc = 12346; uint16_t sequence_number = 1234; int64_t capture_time_ms = 56789; int64_t capture_time_ms_low_priority = 1234567; // Due to the multiplicative factor we can send 3 packets not 2 packets. SendAndExpectPacket(PacedSender::kLowPriority, ssrc, sequence_number++, capture_time_ms, 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, 250, false); send_bucket_->Process(); // Expect normal and low priority to be queued and high to pass through. EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kLowPriority, ssrc_low_priority, sequence_number++, capture_time_ms_low_priority, 250, false)); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, 250, false)); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, 250, false)); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kHighPriority, ssrc, sequence_number++, capture_time_ms, 250, false)); // Expect all high and normal priority to be sent out first. EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0); EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, capture_time_ms, false)) .Times(3) .WillRepeatedly(Return(true)); EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); clock_.AdvanceTimeMilliseconds(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); EXPECT_CALL(callback_, TimeToSendPacket( ssrc_low_priority, _, capture_time_ms_low_priority, false)) .Times(1) .WillRepeatedly(Return(true)); EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); clock_.AdvanceTimeMilliseconds(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); } TEST_F(PacedSenderTest, Pause) { uint32_t ssrc_low_priority = 12345; uint32_t ssrc = 12346; uint16_t sequence_number = 1234; int64_t capture_time_ms = clock_.TimeInMilliseconds(); EXPECT_EQ(0, send_bucket_->QueueInMs()); // Due to the multiplicative factor we can send 3 packets not 2 packets. SendAndExpectPacket(PacedSender::kLowPriority, ssrc, sequence_number++, capture_time_ms, 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, 250, false); send_bucket_->Process(); send_bucket_->Pause(); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, 250, false)); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, 250, false)); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kHighPriority, ssrc, sequence_number++, capture_time_ms, 250, false)); clock_.AdvanceTimeMilliseconds(10000); int64_t second_capture_time_ms = clock_.TimeInMilliseconds(); // Expect everything to be queued. EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kLowPriority, ssrc_low_priority, sequence_number++, second_capture_time_ms, 250, false)); EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms, send_bucket_->QueueInMs()); // Expect no packet to come out while paused. EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0); EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, _)).Times(0); for (int i = 0; i < 10; ++i) { clock_.AdvanceTimeMilliseconds(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); } // Expect high prio packets to come out first followed by all packets in the // way they were added. EXPECT_CALL(callback_, TimeToSendPacket(_, _, capture_time_ms, false)) .Times(3) .WillRepeatedly(Return(true)); send_bucket_->Resume(); EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); clock_.AdvanceTimeMilliseconds(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); EXPECT_CALL(callback_, TimeToSendPacket(_, _, second_capture_time_ms, false)) .Times(1) .WillRepeatedly(Return(true)); EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); clock_.AdvanceTimeMilliseconds(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); EXPECT_EQ(0, send_bucket_->QueueInMs()); } TEST_F(PacedSenderTest, ResendPacket) { uint32_t ssrc = 12346; uint16_t sequence_number = 1234; int64_t capture_time_ms = clock_.TimeInMilliseconds(); EXPECT_EQ(0, send_bucket_->QueueInMs()); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number, capture_time_ms, 250, false)); clock_.AdvanceTimeMilliseconds(1); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number + 1, capture_time_ms + 1, 250, false)); clock_.AdvanceTimeMilliseconds(9999); EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms, send_bucket_->QueueInMs()); // Fails to send first packet so only one call. EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number, capture_time_ms, false)) .Times(1) .WillOnce(Return(false)); clock_.AdvanceTimeMilliseconds(10000); send_bucket_->Process(); // Queue remains unchanged. EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms, send_bucket_->QueueInMs()); // Fails to send second packet. EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number, capture_time_ms, false)) .Times(1) .WillOnce(Return(true)); EXPECT_CALL( callback_, TimeToSendPacket(ssrc, sequence_number + 1, capture_time_ms + 1, false)) .Times(1) .WillOnce(Return(false)); clock_.AdvanceTimeMilliseconds(10000); send_bucket_->Process(); // Queue is reduced by 1 packet. EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms - 1, send_bucket_->QueueInMs()); // Send second packet and queue becomes empty. EXPECT_CALL( callback_, TimeToSendPacket(ssrc, sequence_number + 1, capture_time_ms + 1, false)) .Times(1) .WillOnce(Return(true)); clock_.AdvanceTimeMilliseconds(10000); send_bucket_->Process(); EXPECT_EQ(0, send_bucket_->QueueInMs()); } TEST_F(PacedSenderTest, ExpectedQueueTimeMs) { uint32_t ssrc = 12346; uint16_t sequence_number = 1234; const size_t kNumPackets = 60; const size_t kPacketSize = 1200; const int32_t kMaxBitrate = kPaceMultiplier * 30; EXPECT_EQ(0, send_bucket_->ExpectedQueueTimeMs()); send_bucket_->UpdateBitrate(30, kMaxBitrate, 0); for (size_t i = 0; i < kNumPackets; ++i) { SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), kPacketSize, false); } // Queue in ms = 1000 * (bytes in queue) / (kbit per second * 1000 / 8) int64_t queue_in_ms = static_cast(kNumPackets * kPacketSize * 8 / kMaxBitrate); EXPECT_EQ(queue_in_ms, send_bucket_->ExpectedQueueTimeMs()); int64_t time_start = clock_.TimeInMilliseconds(); while (send_bucket_->QueueSizePackets() > 0) { int time_until_process = send_bucket_->TimeUntilNextProcess(); if (time_until_process <= 0) { send_bucket_->Process(); } else { clock_.AdvanceTimeMilliseconds(time_until_process); } } int64_t duration = clock_.TimeInMilliseconds() - time_start; EXPECT_EQ(0, send_bucket_->ExpectedQueueTimeMs()); // Allow for aliasing, duration should be in [expected(n - 1), expected(n)]. EXPECT_LE(duration, queue_in_ms); EXPECT_GE(duration, queue_in_ms - static_cast(kPacketSize * 8 / kMaxBitrate)); } TEST_F(PacedSenderTest, QueueTimeGrowsOverTime) { uint32_t ssrc = 12346; uint16_t sequence_number = 1234; EXPECT_EQ(0, send_bucket_->QueueInMs()); send_bucket_->UpdateBitrate(30, kPaceMultiplier * 30, 0); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number, clock_.TimeInMilliseconds(), 1200, false); clock_.AdvanceTimeMilliseconds(500); EXPECT_EQ(500, send_bucket_->QueueInMs()); send_bucket_->Process(); EXPECT_EQ(0, send_bucket_->QueueInMs()); } class ProbingPacedSender : public PacedSender { public: ProbingPacedSender(Clock* clock, Callback* callback, int bitrate_kbps, int max_bitrate_kbps, int min_bitrate_kbps) : PacedSender(clock, callback, bitrate_kbps, max_bitrate_kbps, min_bitrate_kbps) {} virtual bool ProbingExperimentIsEnabled() const OVERRIDE { return true; } }; TEST_F(PacedSenderTest, ProbingWithInitialFrame) { const int kNumPackets = 11; const int kNumDeltas = kNumPackets - 1; const size_t kPacketSize = 1200; const int kInitialBitrateKbps = 300; uint32_t ssrc = 12346; uint16_t sequence_number = 1234; const int expected_deltas[kNumDeltas] = { 10, 10, 10, 10, 10, 5, 5, 5, 5, 5}; std::list expected_deltas_list(expected_deltas, expected_deltas + kNumPackets - 1); PacedSenderProbing callback(expected_deltas_list, &clock_); send_bucket_.reset( new ProbingPacedSender(&clock_, &callback, kInitialBitrateKbps, kPaceMultiplier * kInitialBitrateKbps, 0)); for (int i = 0; i < kNumPackets; ++i) { EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), kPacketSize, false)); } while (callback.packets_sent() < kNumPackets) { int time_until_process = send_bucket_->TimeUntilNextProcess(); if (time_until_process <= 0) { send_bucket_->Process(); } else { clock_.AdvanceTimeMilliseconds(time_until_process); } } } TEST_F(PacedSenderTest, PriorityInversion) { uint32_t ssrc = 12346; uint16_t sequence_number = 1234; const size_t kPacketSize = 1200; EXPECT_FALSE(send_bucket_->SendPacket( PacedSender::kHighPriority, ssrc, sequence_number + 3, clock_.TimeInMilliseconds() + 33, kPacketSize, true)); EXPECT_FALSE(send_bucket_->SendPacket( PacedSender::kHighPriority, ssrc, sequence_number + 2, clock_.TimeInMilliseconds() + 33, kPacketSize, true)); EXPECT_FALSE(send_bucket_->SendPacket( PacedSender::kHighPriority, ssrc, sequence_number, clock_.TimeInMilliseconds(), kPacketSize, true)); EXPECT_FALSE(send_bucket_->SendPacket( PacedSender::kHighPriority, ssrc, sequence_number + 1, clock_.TimeInMilliseconds(), kPacketSize, true)); // Packets from earlier frames should be sent first. { ::testing::InSequence sequence; EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number, clock_.TimeInMilliseconds(), true)) .WillOnce(Return(true)); EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 1, clock_.TimeInMilliseconds(), true)) .WillOnce(Return(true)); EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 3, clock_.TimeInMilliseconds() + 33, true)).WillOnce(Return(true)); EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 2, clock_.TimeInMilliseconds() + 33, true)).WillOnce(Return(true)); while (send_bucket_->QueueSizePackets() > 0) { int time_until_process = send_bucket_->TimeUntilNextProcess(); if (time_until_process <= 0) { send_bucket_->Process(); } else { clock_.AdvanceTimeMilliseconds(time_until_process); } } } } TEST_F(PacedSenderTest, PaddingOveruse) { uint32_t ssrc = 12346; uint16_t sequence_number = 1234; const size_t kPacketSize = 1200; // Min bitrate 0 => no padding, padding budget will stay at 0. send_bucket_->UpdateBitrate(60, 90, 0); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), kPacketSize, false); send_bucket_->Process(); // Add 30kbit padding. When increasing budget, media budget will increase from // negative (overuse) while padding budget will increase form 0. clock_.AdvanceTimeMilliseconds(5); send_bucket_->UpdateBitrate(60, 90, 30); EXPECT_FALSE(send_bucket_->SendPacket( PacedSender::kHighPriority, ssrc, sequence_number++, clock_.TimeInMilliseconds(), kPacketSize, false)); // Don't send padding if queue is non-empty, even if padding budget > 0. EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0); send_bucket_->Process(); } } // namespace test } // namespace webrtc