/* * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/pacing/pacing_controller.h" #include #include #include #include #include "modules/pacing/bitrate_prober.h" #include "modules/pacing/interval_budget.h" #include "modules/utility/include/process_thread.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/time_utils.h" #include "system_wrappers/include/clock.h" namespace webrtc { namespace { // Time limit in milliseconds between packet bursts. constexpr TimeDelta kDefaultMinPacketLimit = TimeDelta::Millis<5>(); constexpr TimeDelta kCongestedPacketInterval = TimeDelta::Millis<500>(); constexpr TimeDelta kMaxElapsedTime = TimeDelta::Seconds<2>(); // Upper cap on process interval, in case process has not been called in a long // time. constexpr TimeDelta kMaxProcessingInterval = TimeDelta::Millis<30>(); bool IsDisabled(const WebRtcKeyValueConfig& field_trials, absl::string_view key) { return field_trials.Lookup(key).find("Disabled") == 0; } bool IsEnabled(const WebRtcKeyValueConfig& field_trials, absl::string_view key) { return field_trials.Lookup(key).find("Enabled") == 0; } int GetPriorityForType(RtpPacketToSend::Type type) { switch (type) { case RtpPacketToSend::Type::kAudio: // Audio is always prioritized over other packet types. return 0; case RtpPacketToSend::Type::kRetransmission: // Send retransmissions before new media. return 1; case RtpPacketToSend::Type::kVideo: // Video has "normal" priority, in the old speak. return 2; case RtpPacketToSend::Type::kForwardErrorCorrection: // Send redundancy concurrently to video. If it is delayed it might have a // lower chance of being useful. return 2; case RtpPacketToSend::Type::kPadding: // Packets that are in themselves likely useless, only sent to keep the // BWE high. return 3; } } } // namespace const TimeDelta PacingController::kMaxExpectedQueueLength = TimeDelta::Millis<2000>(); const float PacingController::kDefaultPaceMultiplier = 2.5f; const TimeDelta PacingController::kPausedProcessInterval = kCongestedPacketInterval; PacingController::PacingController(Clock* clock, PacketSender* packet_sender, RtcEventLog* event_log, const WebRtcKeyValueConfig* field_trials) : clock_(clock), packet_sender_(packet_sender), fallback_field_trials_( !field_trials ? std::make_unique() : nullptr), field_trials_(field_trials ? field_trials : fallback_field_trials_.get()), drain_large_queues_( !IsDisabled(*field_trials_, "WebRTC-Pacer-DrainQueue")), send_padding_if_silent_( IsEnabled(*field_trials_, "WebRTC-Pacer-PadInSilence")), pace_audio_(!IsDisabled(*field_trials_, "WebRTC-Pacer-BlockAudio")), min_packet_limit_(kDefaultMinPacketLimit), last_timestamp_(clock_->CurrentTime()), paused_(false), media_budget_(0), padding_budget_(0), prober_(*field_trials_), probing_send_failure_(false), padding_failure_state_(false), pacing_bitrate_(DataRate::Zero()), time_last_process_(clock->CurrentTime()), last_send_time_(time_last_process_), packet_queue_(time_last_process_, field_trials), packet_counter_(0), congestion_window_size_(DataSize::PlusInfinity()), outstanding_data_(DataSize::Zero()), queue_time_limit(kMaxExpectedQueueLength), account_for_audio_(false) { if (!drain_large_queues_) { RTC_LOG(LS_WARNING) << "Pacer queues will not be drained," "pushback experiment must be enabled."; } FieldTrialParameter min_packet_limit_ms("", min_packet_limit_.ms()); ParseFieldTrial({&min_packet_limit_ms}, field_trials_->Lookup("WebRTC-Pacer-MinPacketLimitMs")); min_packet_limit_ = TimeDelta::ms(min_packet_limit_ms.Get()); UpdateBudgetWithElapsedTime(min_packet_limit_); } PacingController::~PacingController() = default; void PacingController::CreateProbeCluster(DataRate bitrate, int cluster_id) { prober_.CreateProbeCluster(bitrate.bps(), CurrentTime().ms(), cluster_id); } void PacingController::Pause() { if (!paused_) RTC_LOG(LS_INFO) << "PacedSender paused."; paused_ = true; packet_queue_.SetPauseState(true, CurrentTime()); } void PacingController::Resume() { if (paused_) RTC_LOG(LS_INFO) << "PacedSender resumed."; paused_ = false; packet_queue_.SetPauseState(false, CurrentTime()); } bool PacingController::IsPaused() const { return paused_; } void PacingController::SetCongestionWindow(DataSize congestion_window_size) { congestion_window_size_ = congestion_window_size; } void PacingController::UpdateOutstandingData(DataSize outstanding_data) { outstanding_data_ = outstanding_data; } bool PacingController::Congested() const { if (congestion_window_size_.IsFinite()) { return outstanding_data_ >= congestion_window_size_; } return false; } Timestamp PacingController::CurrentTime() const { Timestamp time = clock_->CurrentTime(); if (time < last_timestamp_) { RTC_LOG(LS_WARNING) << "Non-monotonic clock behavior observed. Previous timestamp: " << last_timestamp_.ms() << ", new timestamp: " << time.ms(); RTC_DCHECK_GE(time, last_timestamp_); time = last_timestamp_; } last_timestamp_ = time; return time; } void PacingController::SetProbingEnabled(bool enabled) { RTC_CHECK_EQ(0, packet_counter_); prober_.SetEnabled(enabled); } void PacingController::SetPacingRates(DataRate pacing_rate, DataRate padding_rate) { RTC_DCHECK_GT(pacing_rate, DataRate::Zero()); pacing_bitrate_ = pacing_rate; padding_budget_.set_target_rate_kbps(padding_rate.kbps()); RTC_LOG(LS_VERBOSE) << "bwe:pacer_updated pacing_kbps=" << pacing_bitrate_.kbps() << " padding_budget_kbps=" << padding_rate.kbps(); } void PacingController::EnqueuePacket(std::unique_ptr packet) { RTC_DCHECK(pacing_bitrate_ > DataRate::Zero()) << "SetPacingRate must be called before InsertPacket."; Timestamp now = CurrentTime(); prober_.OnIncomingPacket(packet->payload_size()); if (packet->capture_time_ms() < 0) { packet->set_capture_time_ms(now.ms()); } RTC_CHECK(packet->packet_type()); int priority = GetPriorityForType(*packet->packet_type()); packet_queue_.Push(priority, now, packet_counter_++, std::move(packet)); } void PacingController::SetAccountForAudioPackets(bool account_for_audio) { account_for_audio_ = account_for_audio; } TimeDelta PacingController::ExpectedQueueTime() const { RTC_DCHECK_GT(pacing_bitrate_, DataRate::Zero()); return TimeDelta::ms( (QueueSizeData().bytes() * 8 * rtc::kNumMillisecsPerSec) / pacing_bitrate_.bps()); } size_t PacingController::QueueSizePackets() const { return packet_queue_.SizeInPackets(); } DataSize PacingController::QueueSizeData() const { return packet_queue_.Size(); } absl::optional PacingController::FirstSentPacketTime() const { return first_sent_packet_time_; } TimeDelta PacingController::OldestPacketWaitTime() const { Timestamp oldest_packet = packet_queue_.OldestEnqueueTime(); if (oldest_packet.IsInfinite()) { return TimeDelta::Zero(); } return CurrentTime() - oldest_packet; } TimeDelta PacingController::UpdateTimeAndGetElapsed(Timestamp now) { TimeDelta elapsed_time = now - time_last_process_; time_last_process_ = now; if (elapsed_time > kMaxElapsedTime) { RTC_LOG(LS_WARNING) << "Elapsed time (" << elapsed_time.ms() << " ms) longer than expected, limiting to " << kMaxElapsedTime.ms(); elapsed_time = kMaxElapsedTime; } return elapsed_time; } bool PacingController::ShouldSendKeepalive(Timestamp now) const { if (send_padding_if_silent_ || paused_ || Congested()) { // We send a padding packet every 500 ms to ensure we won't get stuck in // congested state due to no feedback being received. TimeDelta elapsed_since_last_send = now - last_send_time_; if (elapsed_since_last_send >= kCongestedPacketInterval) { // We can not send padding unless a normal packet has first been sent. If // we do, timestamps get messed up. if (packet_counter_ > 0) { return true; } } } return false; } absl::optional PacingController::TimeUntilNextProbe() { if (!prober_.IsProbing()) { return absl::nullopt; } TimeDelta time_delta = TimeDelta::ms(prober_.TimeUntilNextProbe(CurrentTime().ms())); if (time_delta > TimeDelta::Zero() || (time_delta == TimeDelta::Zero() && !probing_send_failure_)) { return time_delta; } return absl::nullopt; } TimeDelta PacingController::TimeElapsedSinceLastProcess() const { return CurrentTime() - time_last_process_; } void PacingController::ProcessPackets() { Timestamp now = CurrentTime(); TimeDelta elapsed_time = UpdateTimeAndGetElapsed(now); if (ShouldSendKeepalive(now)) { DataSize keepalive_data_sent = DataSize::Zero(); std::vector> keepalive_packets = packet_sender_->GeneratePadding(DataSize::bytes(1)); for (auto& packet : keepalive_packets) { keepalive_data_sent += DataSize::bytes(packet->payload_size() + packet->padding_size()); packet_sender_->SendRtpPacket(std::move(packet), PacedPacketInfo()); } OnPaddingSent(keepalive_data_sent); } if (paused_) return; if (elapsed_time > TimeDelta::Zero()) { DataRate target_rate = pacing_bitrate_; DataSize queue_size_data = packet_queue_.Size(); if (queue_size_data > DataSize::Zero()) { // Assuming equal size packets and input/output rate, the average packet // has avg_time_left_ms left to get queue_size_bytes out of the queue, if // time constraint shall be met. Determine bitrate needed for that. packet_queue_.UpdateQueueTime(CurrentTime()); if (drain_large_queues_) { TimeDelta avg_time_left = std::max(TimeDelta::ms(1), queue_time_limit - packet_queue_.AverageQueueTime()); DataRate min_rate_needed = queue_size_data / avg_time_left; if (min_rate_needed > target_rate) { target_rate = min_rate_needed; RTC_LOG(LS_VERBOSE) << "bwe:large_pacing_queue pacing_rate_kbps=" << target_rate.kbps(); } } } media_budget_.set_target_rate_kbps(target_rate.kbps()); UpdateBudgetWithElapsedTime(elapsed_time); } bool is_probing = prober_.IsProbing(); PacedPacketInfo pacing_info; absl::optional recommended_probe_size; if (is_probing) { pacing_info = prober_.CurrentCluster(); recommended_probe_size = DataSize::bytes(prober_.RecommendedMinProbeSize()); } DataSize data_sent = DataSize::Zero(); // The paused state is checked in the loop since it leaves the critical // section allowing the paused state to be changed from other code. while (!paused_) { auto* packet = GetPendingPacket(pacing_info); if (packet == nullptr) { // No packet available to send, check if we should send padding. DataSize padding_to_add = PaddingToAdd(recommended_probe_size, data_sent); if (padding_to_add > DataSize::Zero()) { std::vector> padding_packets = packet_sender_->GeneratePadding(padding_to_add); if (padding_packets.empty()) { // No padding packets were generated, quite send loop. break; } for (auto& packet : padding_packets) { EnqueuePacket(std::move(packet)); } // Continue loop to send the padding that was just added. continue; } // Can't fetch new packet and no padding to send, exit send loop. break; } std::unique_ptr rtp_packet = packet->ReleasePacket(); RTC_DCHECK(rtp_packet); packet_sender_->SendRtpPacket(std::move(rtp_packet), pacing_info); data_sent += packet->size(); // Send succeeded, remove it from the queue. OnPacketSent(packet); if (recommended_probe_size && data_sent > *recommended_probe_size) break; } if (is_probing) { probing_send_failure_ = data_sent == DataSize::Zero(); if (!probing_send_failure_) { prober_.ProbeSent(CurrentTime().ms(), data_sent.bytes()); } } } DataSize PacingController::PaddingToAdd( absl::optional recommended_probe_size, DataSize data_sent) { if (!packet_queue_.Empty()) { // Actual payload available, no need to add padding. return DataSize::Zero(); } if (Congested()) { // Don't add padding if congested, even if requested for probing. return DataSize::Zero(); } if (packet_counter_ == 0) { // We can not send padding unless a normal packet has first been sent. If we // do, timestamps get messed up. return DataSize::Zero(); } if (recommended_probe_size) { if (*recommended_probe_size > data_sent) { return *recommended_probe_size - data_sent; } return DataSize::Zero(); } return DataSize::bytes(padding_budget_.bytes_remaining()); } RoundRobinPacketQueue::QueuedPacket* PacingController::GetPendingPacket( const PacedPacketInfo& pacing_info) { if (packet_queue_.Empty()) { return nullptr; } // Since we need to release the lock in order to send, we first pop the // element from the priority queue but keep it in storage, so that we can // reinsert it if send fails. RoundRobinPacketQueue::QueuedPacket* packet = packet_queue_.BeginPop(); bool audio_packet = packet->type() == RtpPacketToSend::Type::kAudio; bool apply_pacing = !audio_packet || pace_audio_; if (apply_pacing && (Congested() || (media_budget_.bytes_remaining() == 0 && pacing_info.probe_cluster_id == PacedPacketInfo::kNotAProbe))) { packet_queue_.CancelPop(); return nullptr; } return packet; } void PacingController::OnPacketSent( RoundRobinPacketQueue::QueuedPacket* packet) { Timestamp now = CurrentTime(); if (!first_sent_packet_time_) { first_sent_packet_time_ = now; } bool audio_packet = packet->type() == RtpPacketToSend::Type::kAudio; if (!audio_packet || account_for_audio_) { // Update media bytes sent. UpdateBudgetWithSentData(packet->size()); last_send_time_ = now; } // Send succeeded, remove it from the queue. packet_queue_.FinalizePop(); padding_failure_state_ = false; } void PacingController::OnPaddingSent(DataSize data_sent) { if (data_sent > DataSize::Zero()) { UpdateBudgetWithSentData(data_sent); } else { padding_failure_state_ = true; } last_send_time_ = CurrentTime(); } void PacingController::UpdateBudgetWithElapsedTime(TimeDelta delta) { delta = std::min(kMaxProcessingInterval, delta); media_budget_.IncreaseBudget(delta.ms()); padding_budget_.IncreaseBudget(delta.ms()); } void PacingController::UpdateBudgetWithSentData(DataSize size) { outstanding_data_ += size; media_budget_.UseBudget(size.bytes()); padding_budget_.UseBudget(size.bytes()); } void PacingController::SetQueueTimeLimit(TimeDelta limit) { queue_time_limit = limit; } } // namespace webrtc