/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/aec_state.h" #include #include #include #include "api/array_view.h" #include "modules/audio_processing/logging/apm_data_dumper.h" #include "rtc_base/atomicops.h" #include "rtc_base/checks.h" namespace webrtc { namespace { // Computes delay of the adaptive filter. int EstimateFilterDelay( const std::vector>& adaptive_filter_frequency_response) { const auto& H2 = adaptive_filter_frequency_response; constexpr size_t kUpperBin = kFftLengthBy2 - 5; RTC_DCHECK_GE(kMaxAdaptiveFilterLength, H2.size()); std::array delays; delays.fill(0); for (size_t k = 1; k < kUpperBin; ++k) { // Find the maximum of H2[j]. size_t peak = 0; for (size_t j = 0; j < H2.size(); ++j) { if (H2[j][k] > H2[peak][k]) { peak = j; } } ++delays[peak]; } return std::distance(delays.begin(), std::max_element(delays.begin(), delays.end())); } float ComputeGainRampupIncrease(const EchoCanceller3Config& config) { const auto& c = config.echo_removal_control.gain_rampup; return powf(1.f / c.first_non_zero_gain, 1.f / c.non_zero_gain_blocks); } } // namespace int AecState::instance_count_ = 0; AecState::AecState(const EchoCanceller3Config& config) : data_dumper_( new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))), erle_estimator_(config.erle.min, config.erle.max_l, config.erle.max_h), config_(config), max_render_(config_.filter.main.length_blocks, 0.f), reverb_decay_(fabsf(config_.ep_strength.default_len)), gain_rampup_increase_(ComputeGainRampupIncrease(config_)), suppression_gain_limiter_(config_) {} AecState::~AecState() = default; void AecState::HandleEchoPathChange( const EchoPathVariability& echo_path_variability) { const auto full_reset = [&]() { blocks_since_last_saturation_ = 0; usable_linear_estimate_ = false; echo_leakage_detected_ = false; capture_signal_saturation_ = false; echo_saturation_ = false; previous_max_sample_ = 0.f; std::fill(max_render_.begin(), max_render_.end(), 0.f); blocks_with_proper_filter_adaptation_ = 0; capture_block_counter_ = 0; filter_has_had_time_to_converge_ = false; render_received_ = false; blocks_with_active_render_ = 0; initial_state_ = true; suppression_gain_limiter_.Reset(); }; // TODO(peah): Refine the reset scheme according to the type of gain and // delay adjustment. if (echo_path_variability.gain_change) { full_reset(); } if (echo_path_variability.delay_change != EchoPathVariability::DelayAdjustment::kBufferReadjustment) { full_reset(); } else if (echo_path_variability.delay_change != EchoPathVariability::DelayAdjustment::kBufferFlush) { full_reset(); } else if (echo_path_variability.delay_change != EchoPathVariability::DelayAdjustment::kDelayReset) { full_reset(); } else if (echo_path_variability.delay_change != EchoPathVariability::DelayAdjustment::kNewDetectedDelay) { full_reset(); } else if (echo_path_variability.gain_change) { capture_block_counter_ = kNumBlocksPerSecond; } } void AecState::Update( const rtc::Optional& delay_estimate, const std::vector>& adaptive_filter_frequency_response, const std::vector& adaptive_filter_impulse_response, bool converged_filter, const RenderBuffer& render_buffer, const std::array& E2_main, const std::array& Y2, const std::array& s, bool echo_leakage_detected) { // Store input parameters. echo_leakage_detected_ = echo_leakage_detected; // Estimate the filter delay. filter_delay_ = EstimateFilterDelay(adaptive_filter_frequency_response); const std::vector& x = render_buffer.Block(-filter_delay_)[0]; // Update counters. ++capture_block_counter_; const bool active_render_block = DetectActiveRender(x); blocks_with_active_render_ += active_render_block ? 1 : 0; blocks_with_proper_filter_adaptation_ += active_render_block && !SaturatedCapture() ? 1 : 0; // Update the limit on the echo suppression after an echo path change to avoid // an initial echo burst. suppression_gain_limiter_.Update(render_buffer.GetRenderActivity()); // Update the ERL and ERLE measures. if (converged_filter && capture_block_counter_ >= 2 * kNumBlocksPerSecond) { const auto& X2 = render_buffer.Spectrum(filter_delay_); erle_estimator_.Update(X2, Y2, E2_main); erl_estimator_.Update(X2, Y2); } // Update the echo audibility evaluator. echo_audibility_.Update(x, s, converged_filter); // Detect and flag echo saturation. // TODO(peah): Add the delay in this computation to ensure that the render and // capture signals are properly aligned. if (config_.ep_strength.echo_can_saturate) { echo_saturation_ = DetectEchoSaturation(x); } // TODO(peah): Move? filter_has_had_time_to_converge_ = blocks_with_proper_filter_adaptation_ >= 1.5f * kNumBlocksPerSecond; initial_state_ = blocks_with_proper_filter_adaptation_ < 5 * kNumBlocksPerSecond; // Flag whether the linear filter estimate is usable. usable_linear_estimate_ = !echo_saturation_ && (converged_filter && filter_has_had_time_to_converge_) && capture_block_counter_ >= 1.f * kNumBlocksPerSecond && !TransparentMode(); // After an amount of active render samples for which an echo should have been // detected in the capture signal if the ERL was not infinite, flag that a // transparent mode should be entered. transparent_mode_ = !converged_filter && (blocks_with_active_render_ == 0 || blocks_with_proper_filter_adaptation_ >= 5 * kNumBlocksPerSecond); } void AecState::UpdateReverb(const std::vector& impulse_response) { // Echo tail estimation enabled if the below variable is set as negative. if (config_.ep_strength.default_len > 0.f) { return; } if ((!(filter_delay_ && usable_linear_estimate_)) || (filter_delay_ > static_cast(config_.filter.main.length_blocks) - 4)) { return; } constexpr float kOneByFftLengthBy2 = 1.f / kFftLengthBy2; // Form the data to match against by squaring the impulse response // coefficients. std::array matching_data_data; RTC_DCHECK_LE(GetTimeDomainLength(config_.filter.main.length_blocks), matching_data_data.size()); rtc::ArrayView matching_data( matching_data_data.data(), GetTimeDomainLength(config_.filter.main.length_blocks)); std::transform(impulse_response.begin(), impulse_response.end(), matching_data.begin(), [](float a) { return a * a; }); if (current_reverb_decay_section_ < config_.filter.main.length_blocks) { // Update accumulated variables for the current filter section. const size_t start_index = current_reverb_decay_section_ * kFftLengthBy2; RTC_DCHECK_GT(matching_data.size(), start_index); RTC_DCHECK_GE(matching_data.size(), start_index + kFftLengthBy2); float section_energy = std::accumulate(matching_data.begin() + start_index, matching_data.begin() + start_index + kFftLengthBy2, 0.f) * kOneByFftLengthBy2; section_energy = std::max( section_energy, 1e-32f); // Regularization to avoid division by 0. RTC_DCHECK_LT(current_reverb_decay_section_, block_energies_.size()); const float energy_ratio = block_energies_[current_reverb_decay_section_] / section_energy; main_filter_is_adapting_ = main_filter_is_adapting_ || (energy_ratio > 1.1f || energy_ratio < 0.9f); // Count consecutive number of "good" filter sections, where "good" means: // 1) energy is above noise floor. // 2) energy of current section has not changed too much from last check. if (!found_end_of_reverb_decay_ && section_energy > tail_energy_ && !main_filter_is_adapting_) { ++num_reverb_decay_sections_next_; } else { found_end_of_reverb_decay_ = true; } block_energies_[current_reverb_decay_section_] = section_energy; if (num_reverb_decay_sections_ > 0) { // Linear regression of log squared magnitude of impulse response. for (size_t i = 0; i < kFftLengthBy2; i++) { auto fast_approx_log2f = [](const float in) { RTC_DCHECK_GT(in, .0f); // Read and interpret float as uint32_t and then cast to float. // This is done to extract the exponent (bits 30 - 23). // "Right shift" of the exponent is then performed by multiplying // with the constant (1/2^23). Finally, we subtract a constant to // remove the bias (https://en.wikipedia.org/wiki/Exponent_bias). union { float dummy; uint32_t a; } x = {in}; float out = x.a; out *= 1.1920929e-7f; // 1/2^23 out -= 126.942695f; // Remove bias. return out; }; RTC_DCHECK_GT(matching_data.size(), start_index + i); float z = fast_approx_log2f(matching_data[start_index + i]); accumulated_nz_ += accumulated_count_ * z; ++accumulated_count_; } } num_reverb_decay_sections_ = num_reverb_decay_sections_ > 0 ? num_reverb_decay_sections_ - 1 : 0; ++current_reverb_decay_section_; } else { constexpr float kMaxDecay = 0.95f; // ~1 sec min RT60. constexpr float kMinDecay = 0.02f; // ~15 ms max RT60. // Accumulated variables throughout whole filter. // Solve for decay rate. float decay = reverb_decay_; if (accumulated_nn_ != 0.f) { const float exp_candidate = -accumulated_nz_ / accumulated_nn_; decay = powf(2.0f, -exp_candidate * kFftLengthBy2); decay = std::min(decay, kMaxDecay); decay = std::max(decay, kMinDecay); } // Filter tail energy (assumed to be noise). constexpr size_t kTailLength = kFftLength; constexpr float k1ByTailLength = 1.f / kTailLength; const size_t tail_index = GetTimeDomainLength(config_.filter.main.length_blocks) - kTailLength; RTC_DCHECK_GT(matching_data.size(), tail_index); tail_energy_ = std::accumulate(matching_data.begin() + tail_index, matching_data.end(), 0.f) * k1ByTailLength; // Update length of decay. num_reverb_decay_sections_ = num_reverb_decay_sections_next_; num_reverb_decay_sections_next_ = 0; // Must have enough data (number of sections) in order // to estimate decay rate. if (num_reverb_decay_sections_ < 5) { num_reverb_decay_sections_ = 0; } const float N = num_reverb_decay_sections_ * kFftLengthBy2; accumulated_nz_ = 0.f; const float k1By12 = 1.f / 12.f; // Arithmetic sum $2 \sum_{i=0}^{(N-1)/2}i^2$ calculated directly. accumulated_nn_ = N * (N * N - 1.0f) * k1By12; accumulated_count_ = -N * 0.5f; // Linear regression approach assumes symmetric index around 0. accumulated_count_ += 0.5f; // Identify the peak index of the impulse response. const size_t peak_index = std::distance( matching_data.begin(), std::max_element(matching_data.begin(), matching_data.end())); current_reverb_decay_section_ = peak_index * kOneByFftLengthBy2 + 3; // Make sure we're not out of bounds. if (current_reverb_decay_section_ + 1 >= config_.filter.main.length_blocks) { current_reverb_decay_section_ = config_.filter.main.length_blocks; } size_t start_index = current_reverb_decay_section_ * kFftLengthBy2; float first_section_energy = std::accumulate(matching_data.begin() + start_index, matching_data.begin() + start_index + kFftLengthBy2, 0.f) * kOneByFftLengthBy2; // To estimate the reverb decay, the energy of the first filter section // must be substantially larger than the last. // Also, the first filter section energy must not deviate too much // from the max peak. bool main_filter_has_reverb = first_section_energy > 4.f * tail_energy_; bool main_filter_is_sane = first_section_energy > 2.f * tail_energy_ && matching_data[peak_index] < 100.f; // Not detecting any decay, but tail is over noise - assume max decay. if (num_reverb_decay_sections_ == 0 && main_filter_is_sane && main_filter_has_reverb) { decay = kMaxDecay; } if (!main_filter_is_adapting_ && main_filter_is_sane && num_reverb_decay_sections_ > 0) { decay = std::max(.97f * reverb_decay_, decay); reverb_decay_ -= .1f * (reverb_decay_ - decay); } found_end_of_reverb_decay_ = !(main_filter_is_sane && main_filter_has_reverb); main_filter_is_adapting_ = false; } data_dumper_->DumpRaw("aec3_reverb_decay", reverb_decay_); data_dumper_->DumpRaw("aec3_reverb_tail_energy", tail_energy_); data_dumper_->DumpRaw("aec3_suppression_gain_limit", SuppressionGainLimit()); } bool AecState::DetectActiveRender(rtc::ArrayView x) const { const float x_energy = std::inner_product(x.begin(), x.end(), x.begin(), 0.f); return x_energy > (config_.render_levels.active_render_limit * config_.render_levels.active_render_limit) * kFftLengthBy2; } bool AecState::DetectEchoSaturation(rtc::ArrayView x) { RTC_DCHECK_LT(0, x.size()); const float max_sample = fabs(*std::max_element( x.begin(), x.end(), [](float a, float b) { return a * a < b * b; })); previous_max_sample_ = max_sample; // Set flag for potential presence of saturated echo blocks_since_last_saturation_ = previous_max_sample_ > 200.f && SaturatedCapture() ? 0 : blocks_since_last_saturation_ + 1; return blocks_since_last_saturation_ < 20; } void AecState::EchoAudibility::Update(rtc::ArrayView x, const std::array& s, bool converged_filter) { auto result_x = std::minmax_element(x.begin(), x.end()); auto result_s = std::minmax_element(s.begin(), s.end()); const float x_abs = std::max(fabsf(*result_x.first), fabsf(*result_x.second)); const float s_abs = std::max(fabsf(*result_s.first), fabsf(*result_s.second)); if (converged_filter) { if (x_abs < 20.f) { ++low_farend_counter_; } else { low_farend_counter_ = 0; } } else { if (x_abs < 100.f) { ++low_farend_counter_; } else { low_farend_counter_ = 0; } } // The echo is deemed as not audible if the echo estimate is on the level of // the quantization noise in the FFTs and the nearend level is sufficiently // strong to mask that by ensuring that the playout and AGC gains do not boost // any residual echo that is below the quantization noise level. Furthermore, // cases where the render signal is very close to zero are also identified as // not producing audible echo. inaudible_echo_ = (max_nearend_ > 500 && s_abs < 30.f) || (!converged_filter && x_abs < 500); inaudible_echo_ = inaudible_echo_ || low_farend_counter_ > 20; } void AecState::EchoAudibility::UpdateWithOutput(rtc::ArrayView e) { const float e_max = *std::max_element(e.begin(), e.end()); const float e_min = *std::min_element(e.begin(), e.end()); const float e_abs = std::max(fabsf(e_max), fabsf(e_min)); if (max_nearend_ < e_abs) { max_nearend_ = e_abs; max_nearend_counter_ = 0; } else { if (++max_nearend_counter_ > 5 * kNumBlocksPerSecond) { max_nearend_ *= 0.995f; } } } } // namespace webrtc