/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/modules/rtp_rtcp/source/byte_io.h" #include "webrtc/modules/rtp_rtcp/source/fec_test_helper.h" #include "webrtc/modules/rtp_rtcp/source/forward_error_correction.h" #include "webrtc/modules/rtp_rtcp/source/producer_fec.h" namespace webrtc { void VerifyHeader(uint16_t seq_num, uint32_t timestamp, int red_pltype, int fec_pltype, RedPacket* packet, bool marker_bit) { EXPECT_GT(packet->length(), kRtpHeaderSize); EXPECT_TRUE(packet->data() != NULL); uint8_t* data = packet->data(); // Marker bit not set. EXPECT_EQ(marker_bit ? 0x80 : 0, data[1] & 0x80); EXPECT_EQ(red_pltype, data[1] & 0x7F); EXPECT_EQ(seq_num, (data[2] << 8) + data[3]); uint32_t parsed_timestamp = (data[4] << 24) + (data[5] << 16) + (data[6] << 8) + data[7]; EXPECT_EQ(timestamp, parsed_timestamp); EXPECT_EQ(static_cast(fec_pltype), data[kRtpHeaderSize]); } class ProducerFecTest : public ::testing::Test { protected: virtual void SetUp() { fec_ = new ForwardErrorCorrection(); producer_ = new ProducerFec(fec_); generator_ = new FrameGenerator; } virtual void TearDown() { delete producer_; delete fec_; delete generator_; } ForwardErrorCorrection* fec_; ProducerFec* producer_; FrameGenerator* generator_; }; // Verifies bug found via fuzzing, where a gap in the packet sequence caused us // to move past the end of the current FEC packet mask byte without moving to // the next byte. That likely caused us to repeatedly read from the same byte, // and if that byte didn't protect packets we would generate empty FEC. TEST_F(ProducerFecTest, NoEmptyFecWithSeqNumGaps) { struct Packet { size_t header_size; size_t payload_size; uint16_t seq_num; bool marker_bit; }; std::vector protected_packets; protected_packets.push_back({15, 3, 41, 0}); protected_packets.push_back({14, 1, 43, 0}); protected_packets.push_back({19, 0, 48, 0}); protected_packets.push_back({19, 0, 50, 0}); protected_packets.push_back({14, 3, 51, 0}); protected_packets.push_back({13, 8, 52, 0}); protected_packets.push_back({19, 2, 53, 0}); protected_packets.push_back({12, 3, 54, 0}); protected_packets.push_back({21, 0, 55, 0}); protected_packets.push_back({13, 3, 57, 1}); FecProtectionParams params = {117, 3, kFecMaskBursty}; producer_->SetFecParameters(¶ms, 0); uint8_t packet[28] = {0}; for (Packet p : protected_packets) { if (p.marker_bit) { packet[1] |= 0x80; } else { packet[1] &= ~0x80; } ByteWriter::WriteBigEndian(&packet[2], p.seq_num); producer_->AddRtpPacketAndGenerateFec(packet, p.payload_size, p.header_size); uint16_t num_fec_packets = producer_->NumAvailableFecPackets(); std::vector fec_packets; if (num_fec_packets > 0) { fec_packets = producer_->GetFecPackets(kRedPayloadType, 99, 100, p.header_size); EXPECT_EQ(num_fec_packets, fec_packets.size()); } for (RedPacket* fec_packet : fec_packets) { delete fec_packet; } } } TEST_F(ProducerFecTest, OneFrameFec) { // The number of media packets (|kNumPackets|), number of frames (one for // this test), and the protection factor (|params->fec_rate|) are set to make // sure the conditions for generating FEC are satisfied. This means: // (1) protection factor is high enough so that actual overhead over 1 frame // of packets is within |kMaxExcessOverhead|, and (2) the total number of // media packets for 1 frame is at least |minimum_media_packets_fec_|. const int kNumPackets = 4; FecProtectionParams params = {15, 3, kFecMaskRandom}; std::list rtp_packets; generator_->NewFrame(kNumPackets); producer_->SetFecParameters(¶ms, 0); // Expecting one FEC packet. uint32_t last_timestamp = 0; for (int i = 0; i < kNumPackets; ++i) { test::RawRtpPacket* rtp_packet = generator_->NextPacket(i, 10); rtp_packets.push_back(rtp_packet); EXPECT_EQ(0, producer_->AddRtpPacketAndGenerateFec(rtp_packet->data, rtp_packet->length, kRtpHeaderSize)); last_timestamp = rtp_packet->header.header.timestamp; } EXPECT_TRUE(producer_->FecAvailable()); uint16_t seq_num = generator_->NextSeqNum(); std::vector packets = producer_->GetFecPackets(kRedPayloadType, kFecPayloadType, seq_num, kRtpHeaderSize); EXPECT_FALSE(producer_->FecAvailable()); ASSERT_EQ(1u, packets.size()); VerifyHeader(seq_num, last_timestamp, kRedPayloadType, kFecPayloadType, packets.front(), false); while (!rtp_packets.empty()) { delete rtp_packets.front(); rtp_packets.pop_front(); } delete packets.front(); } TEST_F(ProducerFecTest, TwoFrameFec) { // The number of media packets/frame (|kNumPackets|), the number of frames // (|kNumFrames|), and the protection factor (|params->fec_rate|) are set to // make sure the conditions for generating FEC are satisfied. This means: // (1) protection factor is high enough so that actual overhead over // |kNumFrames| is within |kMaxExcessOverhead|, and (2) the total number of // media packets for |kNumFrames| frames is at least // |minimum_media_packets_fec_|. const int kNumPackets = 2; const int kNumFrames = 2; FecProtectionParams params = {15, 3, kFecMaskRandom}; std::list rtp_packets; producer_->SetFecParameters(¶ms, 0); // Expecting one FEC packet. uint32_t last_timestamp = 0; for (int i = 0; i < kNumFrames; ++i) { generator_->NewFrame(kNumPackets); for (int j = 0; j < kNumPackets; ++j) { test::RawRtpPacket* rtp_packet = generator_->NextPacket(i * kNumPackets + j, 10); rtp_packets.push_back(rtp_packet); EXPECT_EQ(0, producer_->AddRtpPacketAndGenerateFec(rtp_packet->data, rtp_packet->length, kRtpHeaderSize)); last_timestamp = rtp_packet->header.header.timestamp; } } EXPECT_TRUE(producer_->FecAvailable()); uint16_t seq_num = generator_->NextSeqNum(); std::vector packets = producer_->GetFecPackets(kRedPayloadType, kFecPayloadType, seq_num, kRtpHeaderSize); EXPECT_FALSE(producer_->FecAvailable()); ASSERT_EQ(1u, packets.size()); VerifyHeader(seq_num, last_timestamp, kRedPayloadType, kFecPayloadType, packets.front(), false); while (!rtp_packets.empty()) { delete rtp_packets.front(); rtp_packets.pop_front(); } delete packets.front(); } TEST_F(ProducerFecTest, BuildRedPacket) { generator_->NewFrame(1); test::RawRtpPacket* packet = generator_->NextPacket(0, 10); std::unique_ptr red_packet(producer_->BuildRedPacket( packet->data, packet->length - kRtpHeaderSize, kRtpHeaderSize, kRedPayloadType)); EXPECT_EQ(packet->length + 1, red_packet->length()); VerifyHeader(packet->header.header.sequenceNumber, packet->header.header.timestamp, kRedPayloadType, packet->header.header.payloadType, red_packet.get(), true); // Marker bit set. for (int i = 0; i < 10; ++i) EXPECT_EQ(i, red_packet->data()[kRtpHeaderSize + 1 + i]); delete packet; } } // namespace webrtc