/* * Copyright 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "test/network/simulated_network.h" #include #include #include #include #include "absl/types/optional.h" #include "api/test/simulated_network.h" #include "api/units/data_rate.h" #include "api/units/data_size.h" #include "api/units/time_delta.h" #include "api/units/timestamp.h" #include "rtc_base/checks.h" namespace webrtc { namespace { // Calculate the time that it takes to send N `bits` on a // network with link capacity equal to `capacity_kbps` starting at time // `start_time`. Timestamp CalculateArrivalTime(Timestamp start_time, int64_t bits, DataRate capacity) { if (capacity.IsInfinite()) { return start_time; } if (capacity.IsZero()) { return Timestamp::PlusInfinity(); } // Adding `capacity - 1` to the numerator rounds the extra delay caused by // capacity constraints up to an integral microsecond. Sending 0 bits takes 0 // extra time, while sending 1 bit gets rounded up to 1 (the multiplication by // 1000 is because capacity is in kbps). // The factor 1000 comes from 10^6 / 10^3, where 10^6 is due to the time unit // being us and 10^3 is due to the rate unit being kbps. return start_time + TimeDelta::Micros((1000 * bits + capacity.kbps() - 1) / capacity.kbps()); } void UpdateLegacyConfiguration(SimulatedNetwork::Config& config) { if (config.link_capacity_kbps != 0) { RTC_DCHECK(config.link_capacity == DataRate::KilobitsPerSec(config.link_capacity_kbps) || config.link_capacity == DataRate::Infinity()); config.link_capacity = DataRate::KilobitsPerSec(config.link_capacity_kbps); } } } // namespace SimulatedNetwork::SimulatedNetwork(Config config, uint64_t random_seed) : random_(random_seed), bursting_(false), last_enqueue_time_us_(0) { SetConfig(config); } SimulatedNetwork::~SimulatedNetwork() = default; void SimulatedNetwork::SetConfig(const Config& config) { MutexLock lock(&config_lock_); config_state_.config = config; // Shallow copy of the struct. UpdateLegacyConfiguration(config_state_.config); double prob_loss = config.loss_percent / 100.0; if (config_state_.config.avg_burst_loss_length == -1) { // Uniform loss config_state_.prob_loss_bursting = prob_loss; config_state_.prob_start_bursting = prob_loss; } else { // Lose packets according to a gilbert-elliot model. int avg_burst_loss_length = config.avg_burst_loss_length; int min_avg_burst_loss_length = std::ceil(prob_loss / (1 - prob_loss)); RTC_CHECK_GT(avg_burst_loss_length, min_avg_burst_loss_length) << "For a total packet loss of " << config.loss_percent << "%% then" " avg_burst_loss_length must be " << min_avg_burst_loss_length + 1 << " or higher."; config_state_.prob_loss_bursting = (1.0 - 1.0 / avg_burst_loss_length); config_state_.prob_start_bursting = prob_loss / (1 - prob_loss) / avg_burst_loss_length; } } void SimulatedNetwork::SetConfig(const BuiltInNetworkBehaviorConfig& new_config, Timestamp config_update_time) { RTC_DCHECK_RUNS_SERIALIZED(&process_checker_); if (!capacity_link_.empty()) { // Calculate and update how large portion of the packet first in the // capacity link is left to to send at time `config_update_time`. const BuiltInNetworkBehaviorConfig& current_config = GetConfigState().config; TimeDelta duration_with_current_config = config_update_time - capacity_link_.front().last_update_time; RTC_DCHECK_GE(duration_with_current_config, TimeDelta::Zero()); capacity_link_.front().bits_left_to_send -= std::min( duration_with_current_config.ms() * current_config.link_capacity.kbps(), capacity_link_.front().bits_left_to_send); capacity_link_.front().last_update_time = config_update_time; } SetConfig(new_config); UpdateCapacityQueue(GetConfigState(), config_update_time); if (UpdateNextProcessTime() && next_process_time_changed_callback_) { next_process_time_changed_callback_(); } } void SimulatedNetwork::UpdateConfig( std::function config_modifier) { MutexLock lock(&config_lock_); config_modifier(&config_state_.config); UpdateLegacyConfiguration(config_state_.config); } void SimulatedNetwork::PauseTransmissionUntil(int64_t until_us) { MutexLock lock(&config_lock_); config_state_.pause_transmission_until_us = until_us; } bool SimulatedNetwork::EnqueuePacket(PacketInFlightInfo packet) { RTC_DCHECK_RUNS_SERIALIZED(&process_checker_); // Check that old packets don't get enqueued, the SimulatedNetwork expect that // the packets' send time is monotonically increasing. The tolerance for // non-monotonic enqueue events is 0.5 ms because on multi core systems // clock_gettime(CLOCK_MONOTONIC) can show non-monotonic behaviour between // theads running on different cores. // TODO(bugs.webrtc.org/14525): Open a bug on this with the goal to re-enable // the DCHECK. // At the moment, we see more than 130ms between non-monotonic events, which // is more than expected. // RTC_DCHECK_GE(packet.send_time_us - last_enqueue_time_us_, -2000); ConfigState state = GetConfigState(); // If the network config requires packet overhead, let's apply it as early as // possible. packet.size += state.config.packet_overhead; // If `queue_length_packets` is 0, the queue size is infinite. if (state.config.queue_length_packets > 0 && capacity_link_.size() >= state.config.queue_length_packets) { // Too many packet on the link, drop this one. return false; } // Note that arrival time will be updated when previous packets are dequeued // from the capacity link. // A packet can not enter the narrow section before the last packet has exit. Timestamp enqueue_time = Timestamp::Micros(packet.send_time_us); Timestamp arrival_time = capacity_link_.empty() ? CalculateArrivalTime( std::max(enqueue_time, last_capacity_link_exit_time_), packet.size * 8, state.config.link_capacity) : Timestamp::PlusInfinity(); capacity_link_.push( {.packet = packet, .last_update_time = enqueue_time, .bits_left_to_send = 8 * static_cast(packet.size), .arrival_time = arrival_time}); // Only update `next_process_time_` if not already set. Otherwise, // next_process_time_ is calculated when a packet is dequeued. Note that this // means that the newly enqueued packet risk having an arrival time before // `next_process_time_` if packet reordering is allowed and // config.delay_standard_deviation_ms is set. // TODO(bugs.webrtc.org/14525): Consider preventing this. if (next_process_time_.IsInfinite() && arrival_time.IsFinite()) { RTC_DCHECK_EQ(capacity_link_.size(), 1); next_process_time_ = arrival_time; } last_enqueue_time_us_ = packet.send_time_us; return true; } absl::optional SimulatedNetwork::NextDeliveryTimeUs() const { RTC_DCHECK_RUNS_SERIALIZED(&process_checker_); if (next_process_time_.IsFinite()) { return next_process_time_.us(); } return absl::nullopt; } void SimulatedNetwork::UpdateCapacityQueue(ConfigState state, Timestamp time_now) { // Only the first packet in capacity_link_ have a calculated arrival time // (when packet leave the narrow section), and time when it entered the narrow // section. Also, the configuration may have changed. Thus we need to // calculate the arrival time again before maybe moving the packet to the // delay link. if (!capacity_link_.empty()) { capacity_link_.front().last_update_time = std::max( capacity_link_.front().last_update_time, last_capacity_link_exit_time_); capacity_link_.front().arrival_time = CalculateArrivalTime( capacity_link_.front().last_update_time, capacity_link_.front().bits_left_to_send, state.config.link_capacity); } // The capacity link is empty or the first packet is not expected to exit yet. if (capacity_link_.empty() || time_now < capacity_link_.front().arrival_time) { return; } bool reorder_packets = false; do { // Time to get this packet (the original or just updated arrival_time is // smaller or equal to time_now_us). PacketInfo packet = capacity_link_.front(); RTC_DCHECK(packet.arrival_time.IsFinite()); capacity_link_.pop(); // If the network is paused, the pause will be implemented as an extra delay // to be spent in the `delay_link_` queue. if (state.pause_transmission_until_us > packet.arrival_time.us()) { packet.arrival_time = Timestamp::Micros(state.pause_transmission_until_us); } // Store the original arrival time, before applying packet loss or extra // delay. This is needed to know when it is the first available time the // next packet in the `capacity_link_` queue can start transmitting. last_capacity_link_exit_time_ = packet.arrival_time; // Drop packets at an average rate of `state.config.loss_percent` with // and average loss burst length of `state.config.avg_burst_loss_length`. if ((bursting_ && random_.Rand() < state.prob_loss_bursting) || (!bursting_ && random_.Rand() < state.prob_start_bursting)) { bursting_ = true; packet.arrival_time = Timestamp::MinusInfinity(); } else { // If packets are not dropped, apply extra delay as configured. bursting_ = false; TimeDelta arrival_time_jitter = TimeDelta::Micros(std::max( random_.Gaussian(state.config.queue_delay_ms * 1000, state.config.delay_standard_deviation_ms * 1000), 0.0)); // If reordering is not allowed then adjust arrival_time_jitter // to make sure all packets are sent in order. Timestamp last_arrival_time = delay_link_.empty() ? Timestamp::MinusInfinity() : delay_link_.back().arrival_time; if (!state.config.allow_reordering && !delay_link_.empty() && packet.arrival_time + arrival_time_jitter < last_arrival_time) { arrival_time_jitter = last_arrival_time - packet.arrival_time; } packet.arrival_time += arrival_time_jitter; // Optimization: Schedule a reorder only when a packet will exit before // the one in front. if (last_arrival_time > packet.arrival_time) { reorder_packets = true; } } delay_link_.emplace_back(packet); // If there are no packets in the queue, there is nothing else to do. if (capacity_link_.empty()) { break; } // If instead there is another packet in the `capacity_link_` queue, let's // calculate its arrival_time based on the latest config (which might // have been changed since it was enqueued). Timestamp next_start = std::max(last_capacity_link_exit_time_, capacity_link_.front().last_update_time); capacity_link_.front().arrival_time = CalculateArrivalTime(next_start, capacity_link_.front().packet.size * 8, state.config.link_capacity); // And if the next packet in the queue needs to exit, let's dequeue it. } while (capacity_link_.front().arrival_time <= time_now); if (state.config.allow_reordering && reorder_packets) { // Packets arrived out of order and since the network config allows // reordering, let's sort them per arrival_time to make so they will also // be delivered out of order. std::stable_sort(delay_link_.begin(), delay_link_.end(), [](const PacketInfo& p1, const PacketInfo& p2) { return p1.arrival_time < p2.arrival_time; }); } } SimulatedNetwork::ConfigState SimulatedNetwork::GetConfigState() const { MutexLock lock(&config_lock_); return config_state_; } std::vector SimulatedNetwork::DequeueDeliverablePackets( int64_t receive_time_us) { RTC_DCHECK_RUNS_SERIALIZED(&process_checker_); Timestamp receive_time = Timestamp::Micros(receive_time_us); UpdateCapacityQueue(GetConfigState(), receive_time); std::vector packets_to_deliver; // Check the extra delay queue. while (!delay_link_.empty() && receive_time >= delay_link_.front().arrival_time) { PacketInfo packet_info = delay_link_.front(); packets_to_deliver.emplace_back(PacketDeliveryInfo( packet_info.packet, packet_info.arrival_time.IsFinite() ? packet_info.arrival_time.us() : PacketDeliveryInfo::kNotReceived)); delay_link_.pop_front(); } // There is no need to invoke `next_process_time_changed_callback_` here since // it is expected that the user of NetworkBehaviorInterface calls // NextDeliveryTimeUs after DequeueDeliverablePackets. See // NetworkBehaviorInterface. UpdateNextProcessTime(); return packets_to_deliver; } bool SimulatedNetwork::UpdateNextProcessTime() { Timestamp next_process_time = next_process_time_; next_process_time_ = Timestamp::PlusInfinity(); for (const PacketInfo& packet : delay_link_) { if (packet.arrival_time.IsFinite()) { next_process_time_ = packet.arrival_time; break; } } if (next_process_time_.IsInfinite() && !capacity_link_.empty()) { next_process_time_ = capacity_link_.front().arrival_time; } return next_process_time != next_process_time_; } void SimulatedNetwork::RegisterDeliveryTimeChangedCallback( absl::AnyInvocable callback) { RTC_DCHECK_RUNS_SERIALIZED(&process_checker_); next_process_time_changed_callback_ = std::move(callback); } } // namespace webrtc