/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/tools/event_log_visualizer/analyzer.h" #include #include #include #include #include #include #include "webrtc/api/call/audio_receive_stream.h" #include "webrtc/api/call/audio_send_stream.h" #include "webrtc/base/checks.h" #include "webrtc/base/logging.h" #include "webrtc/base/rate_statistics.h" #include "webrtc/call.h" #include "webrtc/common_types.h" #include "webrtc/modules/bitrate_controller/include/bitrate_controller.h" #include "webrtc/modules/congestion_controller/include/congestion_controller.h" #include "webrtc/modules/rtp_rtcp/include/rtp_rtcp.h" #include "webrtc/modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "webrtc/modules/rtp_rtcp/source/rtp_utility.h" #include "webrtc/modules/rtp_rtcp/source/rtcp_packet/common_header.h" #include "webrtc/modules/rtp_rtcp/source/rtcp_packet/transport_feedback.h" #include "webrtc/video_receive_stream.h" #include "webrtc/video_send_stream.h" namespace webrtc { namespace plotting { namespace { std::string SsrcToString(uint32_t ssrc) { std::stringstream ss; ss << "SSRC " << ssrc; return ss.str(); } // Checks whether an SSRC is contained in the list of desired SSRCs. // Note that an empty SSRC list matches every SSRC. bool MatchingSsrc(uint32_t ssrc, const std::vector& desired_ssrc) { if (desired_ssrc.size() == 0) return true; return std::find(desired_ssrc.begin(), desired_ssrc.end(), ssrc) != desired_ssrc.end(); } double AbsSendTimeToMicroseconds(int64_t abs_send_time) { // The timestamp is a fixed point representation with 6 bits for seconds // and 18 bits for fractions of a second. Thus, we divide by 2^18 to get the // time in seconds and then multiply by 1000000 to convert to microseconds. static constexpr double kTimestampToMicroSec = 1000000.0 / static_cast(1ul << 18); return abs_send_time * kTimestampToMicroSec; } // Computes the difference |later| - |earlier| where |later| and |earlier| // are counters that wrap at |modulus|. The difference is chosen to have the // least absolute value. For example if |modulus| is 8, then the difference will // be chosen in the range [-3, 4]. If |modulus| is 9, then the difference will // be in [-4, 4]. int64_t WrappingDifference(uint32_t later, uint32_t earlier, int64_t modulus) { RTC_DCHECK_LE(1, modulus); RTC_DCHECK_LT(later, modulus); RTC_DCHECK_LT(earlier, modulus); int64_t difference = static_cast(later) - static_cast(earlier); int64_t max_difference = modulus / 2; int64_t min_difference = max_difference - modulus + 1; if (difference > max_difference) { difference -= modulus; } if (difference < min_difference) { difference += modulus; } if (difference > max_difference / 2 || difference < min_difference / 2) { LOG(LS_WARNING) << "Difference between" << later << " and " << earlier << " expected to be in the range (" << min_difference / 2 << "," << max_difference / 2 << ") but is " << difference << ". Correct unwrapping is uncertain."; } return difference; } void RegisterHeaderExtensions( const std::vector& extensions, webrtc::RtpHeaderExtensionMap* extension_map) { extension_map->Erase(); for (const webrtc::RtpExtension& extension : extensions) { extension_map->Register(webrtc::StringToRtpExtensionType(extension.uri), extension.id); } } // Return default values for header extensions, to use on streams without stored // mapping data. Currently this only applies to audio streams, since the mapping // is not stored in the event log. // TODO(ivoc): Remove this once this mapping is stored in the event log for // audio streams. Tracking bug: webrtc:6399 webrtc::RtpHeaderExtensionMap GetDefaultHeaderExtensionMap() { webrtc::RtpHeaderExtensionMap default_map; default_map.Register( webrtc::StringToRtpExtensionType(webrtc::RtpExtension::kAudioLevelUri), webrtc::RtpExtension::kAudioLevelDefaultId); default_map.Register( webrtc::StringToRtpExtensionType(webrtc::RtpExtension::kAbsSendTimeUri), webrtc::RtpExtension::kAbsSendTimeDefaultId); return default_map; } constexpr float kLeftMargin = 0.01f; constexpr float kRightMargin = 0.02f; constexpr float kBottomMargin = 0.02f; constexpr float kTopMargin = 0.05f; class PacketSizeBytes { public: using DataType = LoggedRtpPacket; using ResultType = size_t; size_t operator()(const LoggedRtpPacket& packet) { return packet.total_length; } }; class SequenceNumberDiff { public: using DataType = LoggedRtpPacket; using ResultType = int64_t; int64_t operator()(const LoggedRtpPacket& old_packet, const LoggedRtpPacket& new_packet) { return WrappingDifference(new_packet.header.sequenceNumber, old_packet.header.sequenceNumber, 1ul << 16); } }; class NetworkDelayDiff { public: class AbsSendTime { public: using DataType = LoggedRtpPacket; using ResultType = double; double operator()(const LoggedRtpPacket& old_packet, const LoggedRtpPacket& new_packet) { if (old_packet.header.extension.hasAbsoluteSendTime && new_packet.header.extension.hasAbsoluteSendTime) { int64_t send_time_diff = WrappingDifference( new_packet.header.extension.absoluteSendTime, old_packet.header.extension.absoluteSendTime, 1ul << 24); int64_t recv_time_diff = new_packet.timestamp - old_packet.timestamp; return static_cast(recv_time_diff - AbsSendTimeToMicroseconds(send_time_diff)) / 1000; } else { return 0; } } }; class CaptureTime { public: using DataType = LoggedRtpPacket; using ResultType = double; double operator()(const LoggedRtpPacket& old_packet, const LoggedRtpPacket& new_packet) { int64_t send_time_diff = WrappingDifference( new_packet.header.timestamp, old_packet.header.timestamp, 1ull << 32); int64_t recv_time_diff = new_packet.timestamp - old_packet.timestamp; const double kVideoSampleRate = 90000; // TODO(terelius): We treat all streams as video for now, even though // audio might be sampled at e.g. 16kHz, because it is really difficult to // figure out the true sampling rate of a stream. The effect is that the // delay will be scaled incorrectly for non-video streams. double delay_change = static_cast(recv_time_diff) / 1000 - static_cast(send_time_diff) / kVideoSampleRate * 1000; if (delay_change < -10000 || 10000 < delay_change) { LOG(LS_WARNING) << "Very large delay change. Timestamps correct?"; LOG(LS_WARNING) << "Old capture time " << old_packet.header.timestamp << ", received time " << old_packet.timestamp; LOG(LS_WARNING) << "New capture time " << new_packet.header.timestamp << ", received time " << new_packet.timestamp; LOG(LS_WARNING) << "Receive time difference " << recv_time_diff << " = " << static_cast(recv_time_diff) / 1000000 << "s"; LOG(LS_WARNING) << "Send time difference " << send_time_diff << " = " << static_cast(send_time_diff) / kVideoSampleRate << "s"; } return delay_change; } }; }; template class Accumulated { public: using DataType = typename Extractor::DataType; using ResultType = typename Extractor::ResultType; ResultType operator()(const DataType& old_packet, const DataType& new_packet) { sum += extract(old_packet, new_packet); return sum; } private: Extractor extract; ResultType sum = 0; }; // For each element in data, use |Extractor| to extract a y-coordinate and // store the result in a TimeSeries. template void Pointwise(const std::vector& data, uint64_t begin_time, TimeSeries* result) { Extractor extract; for (size_t i = 0; i < data.size(); i++) { float x = static_cast(data[i].timestamp - begin_time) / 1000000; float y = extract(data[i]); result->points.emplace_back(x, y); } } // For each pair of adjacent elements in |data|, use |Extractor| to extract a // y-coordinate and store the result in a TimeSeries. Note that the x-coordinate // will be the time of the second element in the pair. template void Pairwise(const std::vector& data, uint64_t begin_time, TimeSeries* result) { Extractor extract; for (size_t i = 1; i < data.size(); i++) { float x = static_cast(data[i].timestamp - begin_time) / 1000000; float y = extract(data[i - 1], data[i]); result->points.emplace_back(x, y); } } // Calculates a moving average of |data| and stores the result in a TimeSeries. // A data point is generated every |step| microseconds from |begin_time| // to |end_time|. The value of each data point is the average of the data // during the preceeding |window_duration_us| microseconds. template void MovingAverage(const std::vector& data, uint64_t begin_time, uint64_t end_time, uint64_t window_duration_us, uint64_t step, float y_scaling, webrtc::plotting::TimeSeries* result) { size_t window_index_begin = 0; size_t window_index_end = 0; typename Extractor::ResultType sum_in_window = 0; Extractor extract; for (uint64_t t = begin_time; t < end_time + step; t += step) { while (window_index_end < data.size() && data[window_index_end].timestamp < t) { sum_in_window += extract(data[window_index_end]); ++window_index_end; } while (window_index_begin < data.size() && data[window_index_begin].timestamp < t - window_duration_us) { sum_in_window -= extract(data[window_index_begin]); ++window_index_begin; } float window_duration_s = static_cast(window_duration_us) / 1000000; float x = static_cast(t - begin_time) / 1000000; float y = sum_in_window / window_duration_s * y_scaling; result->points.emplace_back(x, y); } } } // namespace EventLogAnalyzer::EventLogAnalyzer(const ParsedRtcEventLog& log) : parsed_log_(log), window_duration_(250000), step_(10000) { uint64_t first_timestamp = std::numeric_limits::max(); uint64_t last_timestamp = std::numeric_limits::min(); // Maps a stream identifier consisting of ssrc and direction // to the header extensions used by that stream, std::map extension_maps; PacketDirection direction; uint8_t header[IP_PACKET_SIZE]; size_t header_length; size_t total_length; // Make a default extension map for streams without configuration information. // TODO(ivoc): Once configuration of audio streams is stored in the event log, // this can be removed. Tracking bug: webrtc:6399 RtpHeaderExtensionMap default_extension_map = GetDefaultHeaderExtensionMap(); for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); if (event_type != ParsedRtcEventLog::VIDEO_RECEIVER_CONFIG_EVENT && event_type != ParsedRtcEventLog::VIDEO_SENDER_CONFIG_EVENT && event_type != ParsedRtcEventLog::AUDIO_RECEIVER_CONFIG_EVENT && event_type != ParsedRtcEventLog::AUDIO_SENDER_CONFIG_EVENT && event_type != ParsedRtcEventLog::LOG_START && event_type != ParsedRtcEventLog::LOG_END) { uint64_t timestamp = parsed_log_.GetTimestamp(i); first_timestamp = std::min(first_timestamp, timestamp); last_timestamp = std::max(last_timestamp, timestamp); } switch (parsed_log_.GetEventType(i)) { case ParsedRtcEventLog::VIDEO_RECEIVER_CONFIG_EVENT: { VideoReceiveStream::Config config(nullptr); parsed_log_.GetVideoReceiveConfig(i, &config); StreamId stream(config.rtp.remote_ssrc, kIncomingPacket); RegisterHeaderExtensions(config.rtp.extensions, &extension_maps[stream]); video_ssrcs_.insert(stream); for (auto kv : config.rtp.rtx) { StreamId rtx_stream(kv.second.ssrc, kIncomingPacket); RegisterHeaderExtensions(config.rtp.extensions, &extension_maps[rtx_stream]); video_ssrcs_.insert(rtx_stream); rtx_ssrcs_.insert(rtx_stream); } break; } case ParsedRtcEventLog::VIDEO_SENDER_CONFIG_EVENT: { VideoSendStream::Config config(nullptr); parsed_log_.GetVideoSendConfig(i, &config); for (auto ssrc : config.rtp.ssrcs) { StreamId stream(ssrc, kOutgoingPacket); RegisterHeaderExtensions(config.rtp.extensions, &extension_maps[stream]); video_ssrcs_.insert(stream); } for (auto ssrc : config.rtp.rtx.ssrcs) { StreamId rtx_stream(ssrc, kOutgoingPacket); RegisterHeaderExtensions(config.rtp.extensions, &extension_maps[rtx_stream]); video_ssrcs_.insert(rtx_stream); rtx_ssrcs_.insert(rtx_stream); } break; } case ParsedRtcEventLog::AUDIO_RECEIVER_CONFIG_EVENT: { AudioReceiveStream::Config config; parsed_log_.GetAudioReceiveConfig(i, &config); StreamId stream(config.rtp.remote_ssrc, kIncomingPacket); RegisterHeaderExtensions(config.rtp.extensions, &extension_maps[stream]); audio_ssrcs_.insert(stream); break; } case ParsedRtcEventLog::AUDIO_SENDER_CONFIG_EVENT: { AudioSendStream::Config config(nullptr); parsed_log_.GetAudioSendConfig(i, &config); StreamId stream(config.rtp.ssrc, kOutgoingPacket); RegisterHeaderExtensions(config.rtp.extensions, &extension_maps[stream]); audio_ssrcs_.insert(stream); break; } case ParsedRtcEventLog::RTP_EVENT: { MediaType media_type; parsed_log_.GetRtpHeader(i, &direction, &media_type, header, &header_length, &total_length); // Parse header to get SSRC. RtpUtility::RtpHeaderParser rtp_parser(header, header_length); RTPHeader parsed_header; rtp_parser.Parse(&parsed_header); StreamId stream(parsed_header.ssrc, direction); // Look up the extension_map and parse it again to get the extensions. if (extension_maps.count(stream) == 1) { RtpHeaderExtensionMap* extension_map = &extension_maps[stream]; rtp_parser.Parse(&parsed_header, extension_map); } else { // Use the default extension map. // TODO(ivoc): Once configuration of audio streams is stored in the // event log, this can be removed. // Tracking bug: webrtc:6399 rtp_parser.Parse(&parsed_header, &default_extension_map); } uint64_t timestamp = parsed_log_.GetTimestamp(i); rtp_packets_[stream].push_back( LoggedRtpPacket(timestamp, parsed_header, total_length)); break; } case ParsedRtcEventLog::RTCP_EVENT: { uint8_t packet[IP_PACKET_SIZE]; MediaType media_type; parsed_log_.GetRtcpPacket(i, &direction, &media_type, packet, &total_length); // Currently feedback is logged twice, both for audio and video. // Only act on one of them. if (media_type == MediaType::VIDEO) { rtcp::CommonHeader header; const uint8_t* packet_end = packet + total_length; for (const uint8_t* block = packet; block < packet_end; block = header.NextPacket()) { RTC_CHECK(header.Parse(block, packet_end - block)); if (header.type() == rtcp::TransportFeedback::kPacketType && header.fmt() == rtcp::TransportFeedback::kFeedbackMessageType) { std::unique_ptr rtcp_packet( new rtcp::TransportFeedback()); if (rtcp_packet->Parse(header)) { uint32_t ssrc = rtcp_packet->sender_ssrc(); StreamId stream(ssrc, direction); uint64_t timestamp = parsed_log_.GetTimestamp(i); rtcp_packets_[stream].push_back(LoggedRtcpPacket( timestamp, kRtcpTransportFeedback, std::move(rtcp_packet))); } } } } break; } case ParsedRtcEventLog::LOG_START: { break; } case ParsedRtcEventLog::LOG_END: { break; } case ParsedRtcEventLog::BWE_PACKET_LOSS_EVENT: { BwePacketLossEvent bwe_update; bwe_update.timestamp = parsed_log_.GetTimestamp(i); parsed_log_.GetBwePacketLossEvent(i, &bwe_update.new_bitrate, &bwe_update.fraction_loss, &bwe_update.expected_packets); bwe_loss_updates_.push_back(bwe_update); break; } case ParsedRtcEventLog::BWE_PACKET_DELAY_EVENT: { break; } case ParsedRtcEventLog::AUDIO_PLAYOUT_EVENT: { break; } case ParsedRtcEventLog::UNKNOWN_EVENT: { break; } } } if (last_timestamp < first_timestamp) { // No useful events in the log. first_timestamp = last_timestamp = 0; } begin_time_ = first_timestamp; end_time_ = last_timestamp; call_duration_s_ = static_cast(end_time_ - begin_time_) / 1000000; } class BitrateObserver : public CongestionController::Observer, public RemoteBitrateObserver { public: BitrateObserver() : last_bitrate_bps_(0), bitrate_updated_(false) {} void OnNetworkChanged(uint32_t bitrate_bps, uint8_t fraction_loss, int64_t rtt_ms) override { last_bitrate_bps_ = bitrate_bps; bitrate_updated_ = true; } void OnReceiveBitrateChanged(const std::vector& ssrcs, uint32_t bitrate) override {} uint32_t last_bitrate_bps() const { return last_bitrate_bps_; } bool GetAndResetBitrateUpdated() { bool bitrate_updated = bitrate_updated_; bitrate_updated_ = false; return bitrate_updated; } private: uint32_t last_bitrate_bps_; bool bitrate_updated_; }; bool EventLogAnalyzer::IsRtxSsrc(StreamId stream_id) const { return rtx_ssrcs_.count(stream_id) == 1; } bool EventLogAnalyzer::IsVideoSsrc(StreamId stream_id) const { return video_ssrcs_.count(stream_id) == 1; } bool EventLogAnalyzer::IsAudioSsrc(StreamId stream_id) const { return audio_ssrcs_.count(stream_id) == 1; } std::string EventLogAnalyzer::GetStreamName(StreamId stream_id) const { std::stringstream name; if (IsAudioSsrc(stream_id)) { name << "Audio "; } else if (IsVideoSsrc(stream_id)) { name << "Video "; } else { name << "Unknown "; } if (IsRtxSsrc(stream_id)) name << "RTX "; if (stream_id.GetDirection() == kIncomingPacket) { name << "(In) "; } else { name << "(Out) "; } name << SsrcToString(stream_id.GetSsrc()); return name.str(); } void EventLogAnalyzer::CreatePacketGraph(PacketDirection desired_direction, Plot* plot) { for (auto& kv : rtp_packets_) { StreamId stream_id = kv.first; const std::vector& packet_stream = kv.second; // Filter on direction and SSRC. if (stream_id.GetDirection() != desired_direction || !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) { continue; } TimeSeries time_series; time_series.label = GetStreamName(stream_id); time_series.style = BAR_GRAPH; Pointwise(packet_stream, begin_time_, &time_series); plot->series_list_.push_back(std::move(time_series)); } plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 1, "Packet size (bytes)", kBottomMargin, kTopMargin); if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { plot->SetTitle("Incoming RTP packets"); } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { plot->SetTitle("Outgoing RTP packets"); } } template void EventLogAnalyzer::CreateAccumulatedPacketsTimeSeries( PacketDirection desired_direction, Plot* plot, const std::map>& packets, const std::string& label_prefix) { for (auto& kv : packets) { StreamId stream_id = kv.first; const std::vector& packet_stream = kv.second; // Filter on direction and SSRC. if (stream_id.GetDirection() != desired_direction || !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) { continue; } TimeSeries time_series; time_series.label = label_prefix + " " + GetStreamName(stream_id); time_series.style = LINE_GRAPH; for (size_t i = 0; i < packet_stream.size(); i++) { float x = static_cast(packet_stream[i].timestamp - begin_time_) / 1000000; time_series.points.emplace_back(x, i); time_series.points.emplace_back(x, i + 1); } plot->series_list_.push_back(std::move(time_series)); } } void EventLogAnalyzer::CreateAccumulatedPacketsGraph( PacketDirection desired_direction, Plot* plot) { CreateAccumulatedPacketsTimeSeries(desired_direction, plot, rtp_packets_, "RTP"); CreateAccumulatedPacketsTimeSeries(desired_direction, plot, rtcp_packets_, "RTCP"); plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 1, "Received Packets", kBottomMargin, kTopMargin); if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { plot->SetTitle("Accumulated Incoming RTP/RTCP packets"); } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { plot->SetTitle("Accumulated Outgoing RTP/RTCP packets"); } } // For each SSRC, plot the time between the consecutive playouts. void EventLogAnalyzer::CreatePlayoutGraph(Plot* plot) { std::map time_series; std::map last_playout; uint32_t ssrc; for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); if (event_type == ParsedRtcEventLog::AUDIO_PLAYOUT_EVENT) { parsed_log_.GetAudioPlayout(i, &ssrc); uint64_t timestamp = parsed_log_.GetTimestamp(i); if (MatchingSsrc(ssrc, desired_ssrc_)) { float x = static_cast(timestamp - begin_time_) / 1000000; float y = static_cast(timestamp - last_playout[ssrc]) / 1000; if (time_series[ssrc].points.size() == 0) { // There were no previusly logged playout for this SSRC. // Generate a point, but place it on the x-axis. y = 0; } time_series[ssrc].points.push_back(TimeSeriesPoint(x, y)); last_playout[ssrc] = timestamp; } } } // Set labels and put in graph. for (auto& kv : time_series) { kv.second.label = SsrcToString(kv.first); kv.second.style = BAR_GRAPH; plot->series_list_.push_back(std::move(kv.second)); } plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 1, "Time since last playout (ms)", kBottomMargin, kTopMargin); plot->SetTitle("Audio playout"); } // For audio SSRCs, plot the audio level. void EventLogAnalyzer::CreateAudioLevelGraph(Plot* plot) { std::map time_series; for (auto& kv : rtp_packets_) { StreamId stream_id = kv.first; const std::vector& packet_stream = kv.second; // TODO(ivoc): When audio send/receive configs are stored in the event // log, a check should be added here to only process audio // streams. Tracking bug: webrtc:6399 for (auto& packet : packet_stream) { if (packet.header.extension.hasAudioLevel) { float x = static_cast(packet.timestamp - begin_time_) / 1000000; // The audio level is stored in -dBov (so e.g. -10 dBov is stored as 10) // Here we convert it to dBov. float y = static_cast(-packet.header.extension.audioLevel); time_series[stream_id].points.emplace_back(TimeSeriesPoint(x, y)); } } } for (auto& series : time_series) { series.second.label = GetStreamName(series.first); series.second.style = LINE_GRAPH; plot->series_list_.push_back(std::move(series.second)); } plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetYAxis(-127, 0, "Audio playout level (dBov)", kBottomMargin, kTopMargin); plot->SetTitle("Audio level"); } // For each SSRC, plot the time between the consecutive playouts. void EventLogAnalyzer::CreateSequenceNumberGraph(Plot* plot) { for (auto& kv : rtp_packets_) { StreamId stream_id = kv.first; const std::vector& packet_stream = kv.second; // Filter on direction and SSRC. if (stream_id.GetDirection() != kIncomingPacket || !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) { continue; } TimeSeries time_series; time_series.label = GetStreamName(stream_id); time_series.style = BAR_GRAPH; Pairwise(packet_stream, begin_time_, &time_series); plot->series_list_.push_back(std::move(time_series)); } plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 1, "Difference since last packet", kBottomMargin, kTopMargin); plot->SetTitle("Sequence number"); } void EventLogAnalyzer::CreateIncomingPacketLossGraph(Plot* plot) { for (auto& kv : rtp_packets_) { StreamId stream_id = kv.first; const std::vector& packet_stream = kv.second; // Filter on direction and SSRC. if (stream_id.GetDirection() != kIncomingPacket || !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) { continue; } TimeSeries time_series; time_series.label = GetStreamName(stream_id); time_series.style = LINE_DOT_GRAPH; const uint64_t kWindowUs = 1000000; const LoggedRtpPacket* first_in_window = &packet_stream.front(); const LoggedRtpPacket* last_in_window = &packet_stream.front(); int packets_in_window = 0; for (const LoggedRtpPacket& packet : packet_stream) { if (packet.timestamp > first_in_window->timestamp + kWindowUs) { uint16_t expected_num_packets = last_in_window->header.sequenceNumber - first_in_window->header.sequenceNumber + 1; float fraction_lost = (expected_num_packets - packets_in_window) / static_cast(expected_num_packets); float y = fraction_lost * 100; float x = static_cast(last_in_window->timestamp - begin_time_) / 1000000; time_series.points.emplace_back(x, y); first_in_window = &packet; last_in_window = &packet; packets_in_window = 1; continue; } ++packets_in_window; last_in_window = &packet; } plot->series_list_.push_back(std::move(time_series)); } plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 1, "Estimated loss rate (%)", kBottomMargin, kTopMargin); plot->SetTitle("Estimated incoming loss rate"); } void EventLogAnalyzer::CreateDelayChangeGraph(Plot* plot) { for (auto& kv : rtp_packets_) { StreamId stream_id = kv.first; const std::vector& packet_stream = kv.second; // Filter on direction and SSRC. if (stream_id.GetDirection() != kIncomingPacket || !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_) || IsAudioSsrc(stream_id) || !IsVideoSsrc(stream_id) || IsRtxSsrc(stream_id)) { continue; } TimeSeries capture_time_data; capture_time_data.label = GetStreamName(stream_id) + " capture-time"; capture_time_data.style = BAR_GRAPH; Pairwise(packet_stream, begin_time_, &capture_time_data); plot->series_list_.push_back(std::move(capture_time_data)); TimeSeries send_time_data; send_time_data.label = GetStreamName(stream_id) + " abs-send-time"; send_time_data.style = BAR_GRAPH; Pairwise(packet_stream, begin_time_, &send_time_data); plot->series_list_.push_back(std::move(send_time_data)); } plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 1, "Latency change (ms)", kBottomMargin, kTopMargin); plot->SetTitle("Network latency change between consecutive packets"); } void EventLogAnalyzer::CreateAccumulatedDelayChangeGraph(Plot* plot) { for (auto& kv : rtp_packets_) { StreamId stream_id = kv.first; const std::vector& packet_stream = kv.second; // Filter on direction and SSRC. if (stream_id.GetDirection() != kIncomingPacket || !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_) || IsAudioSsrc(stream_id) || !IsVideoSsrc(stream_id) || IsRtxSsrc(stream_id)) { continue; } TimeSeries capture_time_data; capture_time_data.label = GetStreamName(stream_id) + " capture-time"; capture_time_data.style = LINE_GRAPH; Pairwise>( packet_stream, begin_time_, &capture_time_data); plot->series_list_.push_back(std::move(capture_time_data)); TimeSeries send_time_data; send_time_data.label = GetStreamName(stream_id) + " abs-send-time"; send_time_data.style = LINE_GRAPH; Pairwise>( packet_stream, begin_time_, &send_time_data); plot->series_list_.push_back(std::move(send_time_data)); } plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 1, "Latency change (ms)", kBottomMargin, kTopMargin); plot->SetTitle("Accumulated network latency change"); } // Plot the fraction of packets lost (as perceived by the loss-based BWE). void EventLogAnalyzer::CreateFractionLossGraph(Plot* plot) { plot->series_list_.push_back(TimeSeries()); for (auto& bwe_update : bwe_loss_updates_) { float x = static_cast(bwe_update.timestamp - begin_time_) / 1000000; float y = static_cast(bwe_update.fraction_loss) / 255 * 100; plot->series_list_.back().points.emplace_back(x, y); } plot->series_list_.back().label = "Fraction lost"; plot->series_list_.back().style = LINE_DOT_GRAPH; plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 10, "Percent lost packets", kBottomMargin, kTopMargin); plot->SetTitle("Reported packet loss"); } // Plot the total bandwidth used by all RTP streams. void EventLogAnalyzer::CreateTotalBitrateGraph( PacketDirection desired_direction, Plot* plot) { struct TimestampSize { TimestampSize(uint64_t t, size_t s) : timestamp(t), size(s) {} uint64_t timestamp; size_t size; }; std::vector packets; PacketDirection direction; size_t total_length; // Extract timestamps and sizes for the relevant packets. for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) { ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i); if (event_type == ParsedRtcEventLog::RTP_EVENT) { parsed_log_.GetRtpHeader(i, &direction, nullptr, nullptr, nullptr, &total_length); if (direction == desired_direction) { uint64_t timestamp = parsed_log_.GetTimestamp(i); packets.push_back(TimestampSize(timestamp, total_length)); } } } size_t window_index_begin = 0; size_t window_index_end = 0; size_t bytes_in_window = 0; // Calculate a moving average of the bitrate and store in a TimeSeries. plot->series_list_.push_back(TimeSeries()); for (uint64_t time = begin_time_; time < end_time_ + step_; time += step_) { while (window_index_end < packets.size() && packets[window_index_end].timestamp < time) { bytes_in_window += packets[window_index_end].size; ++window_index_end; } while (window_index_begin < packets.size() && packets[window_index_begin].timestamp < time - window_duration_) { RTC_DCHECK_LE(packets[window_index_begin].size, bytes_in_window); bytes_in_window -= packets[window_index_begin].size; ++window_index_begin; } float window_duration_in_seconds = static_cast(window_duration_) / 1000000; float x = static_cast(time - begin_time_) / 1000000; float y = bytes_in_window * 8 / window_duration_in_seconds / 1000; plot->series_list_.back().points.push_back(TimeSeriesPoint(x, y)); } // Set labels. if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { plot->series_list_.back().label = "Incoming bitrate"; } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { plot->series_list_.back().label = "Outgoing bitrate"; } plot->series_list_.back().style = LINE_GRAPH; // Overlay the send-side bandwidth estimate over the outgoing bitrate. if (desired_direction == kOutgoingPacket) { plot->series_list_.push_back(TimeSeries()); for (auto& bwe_update : bwe_loss_updates_) { float x = static_cast(bwe_update.timestamp - begin_time_) / 1000000; float y = static_cast(bwe_update.new_bitrate) / 1000; plot->series_list_.back().points.emplace_back(x, y); } plot->series_list_.back().label = "Loss-based estimate"; plot->series_list_.back().style = LINE_GRAPH; } plot->series_list_.back().style = LINE_GRAPH; plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin); if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { plot->SetTitle("Incoming RTP bitrate"); } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { plot->SetTitle("Outgoing RTP bitrate"); } } // For each SSRC, plot the bandwidth used by that stream. void EventLogAnalyzer::CreateStreamBitrateGraph( PacketDirection desired_direction, Plot* plot) { for (auto& kv : rtp_packets_) { StreamId stream_id = kv.first; const std::vector& packet_stream = kv.second; // Filter on direction and SSRC. if (stream_id.GetDirection() != desired_direction || !MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) { continue; } TimeSeries time_series; time_series.label = GetStreamName(stream_id); time_series.style = LINE_GRAPH; double bytes_to_kilobits = 8.0 / 1000; MovingAverage(packet_stream, begin_time_, end_time_, window_duration_, step_, bytes_to_kilobits, &time_series); plot->series_list_.push_back(std::move(time_series)); } plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin); if (desired_direction == webrtc::PacketDirection::kIncomingPacket) { plot->SetTitle("Incoming bitrate per stream"); } else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) { plot->SetTitle("Outgoing bitrate per stream"); } } void EventLogAnalyzer::CreateBweSimulationGraph(Plot* plot) { std::map outgoing_rtp; std::map incoming_rtcp; for (const auto& kv : rtp_packets_) { if (kv.first.GetDirection() == PacketDirection::kOutgoingPacket) { for (const LoggedRtpPacket& rtp_packet : kv.second) outgoing_rtp.insert(std::make_pair(rtp_packet.timestamp, &rtp_packet)); } } for (const auto& kv : rtcp_packets_) { if (kv.first.GetDirection() == PacketDirection::kIncomingPacket) { for (const LoggedRtcpPacket& rtcp_packet : kv.second) incoming_rtcp.insert( std::make_pair(rtcp_packet.timestamp, &rtcp_packet)); } } SimulatedClock clock(0); BitrateObserver observer; RtcEventLogNullImpl null_event_log; CongestionController cc(&clock, &observer, &observer, &null_event_log); // TODO(holmer): Log the call config and use that here instead. static const uint32_t kDefaultStartBitrateBps = 300000; cc.SetBweBitrates(0, kDefaultStartBitrateBps, -1); TimeSeries time_series; time_series.label = "Delay-based estimate"; time_series.style = LINE_DOT_GRAPH; TimeSeries acked_time_series; acked_time_series.label = "Acked bitrate"; acked_time_series.style = LINE_DOT_GRAPH; auto rtp_iterator = outgoing_rtp.begin(); auto rtcp_iterator = incoming_rtcp.begin(); auto NextRtpTime = [&]() { if (rtp_iterator != outgoing_rtp.end()) return static_cast(rtp_iterator->first); return std::numeric_limits::max(); }; auto NextRtcpTime = [&]() { if (rtcp_iterator != incoming_rtcp.end()) return static_cast(rtcp_iterator->first); return std::numeric_limits::max(); }; auto NextProcessTime = [&]() { if (rtcp_iterator != incoming_rtcp.end() || rtp_iterator != outgoing_rtp.end()) { return clock.TimeInMicroseconds() + std::max(cc.TimeUntilNextProcess() * 1000, 0); } return std::numeric_limits::max(); }; RateStatistics acked_bitrate(1000, 8000); int64_t time_us = std::min(NextRtpTime(), NextRtcpTime()); while (time_us != std::numeric_limits::max()) { clock.AdvanceTimeMicroseconds(time_us - clock.TimeInMicroseconds()); if (clock.TimeInMicroseconds() >= NextRtcpTime()) { RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtcpTime()); const LoggedRtcpPacket& rtcp = *rtcp_iterator->second; if (rtcp.type == kRtcpTransportFeedback) { TransportFeedbackObserver* observer = cc.GetTransportFeedbackObserver(); observer->OnTransportFeedback(*static_cast( rtcp.packet.get())); std::vector feedback = observer->GetTransportFeedbackVector(); rtc::Optional bitrate_bps; if (!feedback.empty()) { for (const PacketInfo& packet : feedback) acked_bitrate.Update(packet.payload_size, packet.arrival_time_ms); bitrate_bps = acked_bitrate.Rate(feedback.back().arrival_time_ms); } uint32_t y = 0; if (bitrate_bps) y = *bitrate_bps / 1000; float x = static_cast(clock.TimeInMicroseconds() - begin_time_) / 1000000; acked_time_series.points.emplace_back(x, y); } ++rtcp_iterator; } if (clock.TimeInMicroseconds() >= NextRtpTime()) { RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtpTime()); const LoggedRtpPacket& rtp = *rtp_iterator->second; if (rtp.header.extension.hasTransportSequenceNumber) { RTC_DCHECK(rtp.header.extension.hasTransportSequenceNumber); cc.GetTransportFeedbackObserver()->AddPacket( rtp.header.extension.transportSequenceNumber, rtp.total_length, PacketInfo::kNotAProbe); rtc::SentPacket sent_packet( rtp.header.extension.transportSequenceNumber, rtp.timestamp / 1000); cc.OnSentPacket(sent_packet); } ++rtp_iterator; } if (clock.TimeInMicroseconds() >= NextProcessTime()) { RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextProcessTime()); cc.Process(); } if (observer.GetAndResetBitrateUpdated()) { uint32_t y = observer.last_bitrate_bps() / 1000; float x = static_cast(clock.TimeInMicroseconds() - begin_time_) / 1000000; time_series.points.emplace_back(x, y); } time_us = std::min({NextRtpTime(), NextRtcpTime(), NextProcessTime()}); } // Add the data set to the plot. plot->series_list_.push_back(std::move(time_series)); plot->series_list_.push_back(std::move(acked_time_series)); plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin); plot->SetTitle("Simulated BWE behavior"); } // TODO(holmer): Remove once TransportFeedbackAdapter no longer needs a // BitrateController. class NullBitrateController : public BitrateController { public: ~NullBitrateController() override {} RtcpBandwidthObserver* CreateRtcpBandwidthObserver() override { return nullptr; } void SetStartBitrate(int start_bitrate_bps) override {} void SetMinMaxBitrate(int min_bitrate_bps, int max_bitrate_bps) override {} void SetBitrates(int start_bitrate_bps, int min_bitrate_bps, int max_bitrate_bps) override {} void ResetBitrates(int bitrate_bps, int min_bitrate_bps, int max_bitrate_bps) override {} void OnDelayBasedBweResult(const DelayBasedBwe::Result& result) override {} bool AvailableBandwidth(uint32_t* bandwidth) const override { return false; } void SetReservedBitrate(uint32_t reserved_bitrate_bps) override {} bool GetNetworkParameters(uint32_t* bitrate, uint8_t* fraction_loss, int64_t* rtt) override { return false; } int64_t TimeUntilNextProcess() override { return 0; } void Process() override {} }; void EventLogAnalyzer::CreateNetworkDelayFeedbackGraph(Plot* plot) { std::map outgoing_rtp; std::map incoming_rtcp; for (const auto& kv : rtp_packets_) { if (kv.first.GetDirection() == PacketDirection::kOutgoingPacket) { for (const LoggedRtpPacket& rtp_packet : kv.second) outgoing_rtp.insert(std::make_pair(rtp_packet.timestamp, &rtp_packet)); } } for (const auto& kv : rtcp_packets_) { if (kv.first.GetDirection() == PacketDirection::kIncomingPacket) { for (const LoggedRtcpPacket& rtcp_packet : kv.second) incoming_rtcp.insert( std::make_pair(rtcp_packet.timestamp, &rtcp_packet)); } } SimulatedClock clock(0); NullBitrateController null_controller; TransportFeedbackAdapter feedback_adapter(&clock, &null_controller); TimeSeries time_series; time_series.label = "Network Delay Change"; time_series.style = LINE_DOT_GRAPH; int64_t estimated_base_delay_ms = std::numeric_limits::max(); auto rtp_iterator = outgoing_rtp.begin(); auto rtcp_iterator = incoming_rtcp.begin(); auto NextRtpTime = [&]() { if (rtp_iterator != outgoing_rtp.end()) return static_cast(rtp_iterator->first); return std::numeric_limits::max(); }; auto NextRtcpTime = [&]() { if (rtcp_iterator != incoming_rtcp.end()) return static_cast(rtcp_iterator->first); return std::numeric_limits::max(); }; int64_t time_us = std::min(NextRtpTime(), NextRtcpTime()); while (time_us != std::numeric_limits::max()) { clock.AdvanceTimeMicroseconds(time_us - clock.TimeInMicroseconds()); if (clock.TimeInMicroseconds() >= NextRtcpTime()) { RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtcpTime()); const LoggedRtcpPacket& rtcp = *rtcp_iterator->second; if (rtcp.type == kRtcpTransportFeedback) { feedback_adapter.OnTransportFeedback( *static_cast(rtcp.packet.get())); std::vector feedback = feedback_adapter.GetTransportFeedbackVector(); for (const PacketInfo& packet : feedback) { int64_t y = packet.arrival_time_ms - packet.send_time_ms; float x = static_cast(clock.TimeInMicroseconds() - begin_time_) / 1000000; estimated_base_delay_ms = std::min(y, estimated_base_delay_ms); time_series.points.emplace_back(x, y); } } ++rtcp_iterator; } if (clock.TimeInMicroseconds() >= NextRtpTime()) { RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtpTime()); const LoggedRtpPacket& rtp = *rtp_iterator->second; if (rtp.header.extension.hasTransportSequenceNumber) { RTC_DCHECK(rtp.header.extension.hasTransportSequenceNumber); feedback_adapter.AddPacket(rtp.header.extension.transportSequenceNumber, rtp.total_length, 0); feedback_adapter.OnSentPacket( rtp.header.extension.transportSequenceNumber, rtp.timestamp / 1000); } ++rtp_iterator; } time_us = std::min(NextRtpTime(), NextRtcpTime()); } // We assume that the base network delay (w/o queues) is the min delay // observed during the call. for (TimeSeriesPoint& point : time_series.points) point.y -= estimated_base_delay_ms; // Add the data set to the plot. plot->series_list_.push_back(std::move(time_series)); plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin); plot->SetSuggestedYAxis(0, 10, "Delay (ms)", kBottomMargin, kTopMargin); plot->SetTitle("Network Delay Change."); } } // namespace plotting } // namespace webrtc