/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/audio_processing/aec3/suppression_gain.h" #include "webrtc/typedefs.h" #if defined(WEBRTC_ARCH_X86_FAMILY) #include #endif #include #include #include #include #include "webrtc/modules/audio_processing/aec3/vector_math.h" #include "webrtc/rtc_base/checks.h" namespace webrtc { namespace { // Reduce gain to avoid narrow band echo leakage. void NarrowBandAttenuation(int narrow_bin, std::array* gain) { const int upper_bin = std::min(narrow_bin + 6, static_cast(kFftLengthBy2Plus1 - 1)); for (int k = std::max(0, narrow_bin - 6); k <= upper_bin; ++k) { (*gain)[k] = std::min((*gain)[k], 0.001f); } } // Adjust the gains according to the presence of known external filters. void AdjustForExternalFilters(std::array* gain) { // Limit the low frequency gains to avoid the impact of the high-pass filter // on the lower-frequency gain influencing the overall achieved gain. (*gain)[0] = (*gain)[1] = std::min((*gain)[1], (*gain)[2]); // Limit the high frequency gains to avoid the impact of the anti-aliasing // filter on the upper-frequency gains influencing the overall achieved // gain. TODO(peah): Update this when new anti-aliasing filters are // implemented. constexpr size_t kAntiAliasingImpactLimit = (64 * 2000) / 8000; const float min_upper_gain = (*gain)[kAntiAliasingImpactLimit]; std::for_each( gain->begin() + kAntiAliasingImpactLimit, gain->end() - 1, [min_upper_gain](float& a) { a = std::min(a, min_upper_gain); }); (*gain)[kFftLengthBy2] = (*gain)[kFftLengthBy2Minus1]; } // Computes the gain to apply for the bands beyond the first band. float UpperBandsGain( const rtc::Optional& narrow_peak_band, bool saturated_echo, const std::vector>& render, const std::array& low_band_gain) { RTC_DCHECK_LT(0, render.size()); if (render.size() == 1) { return 1.f; } if (narrow_peak_band && (*narrow_peak_band > static_cast(kFftLengthBy2Plus1 - 10))) { return 0.001f; } constexpr size_t kLowBandGainLimit = kFftLengthBy2 / 2; const float gain_below_8_khz = *std::min_element( low_band_gain.begin() + kLowBandGainLimit, low_band_gain.end()); // Always attenuate the upper bands when there is saturated echo. if (saturated_echo) { return std::min(0.001f, gain_below_8_khz); } // Compute the upper and lower band energies. const auto sum_of_squares = [](float a, float b) { return a + b * b; }; const float low_band_energy = std::accumulate(render[0].begin(), render[0].end(), 0.f, sum_of_squares); float high_band_energy = 0.f; for (size_t k = 1; k < render.size(); ++k) { const float energy = std::accumulate(render[k].begin(), render[k].end(), 0.f, sum_of_squares); high_band_energy = std::max(high_band_energy, energy); } // If there is more power in the lower frequencies than the upper frequencies, // or if the power in upper frequencies is low, do not bound the gain in the // upper bands. float anti_howling_gain; constexpr float kThreshold = kSubBlockSize * 10.f * 10.f; if (high_band_energy < std::max(low_band_energy, kThreshold)) { anti_howling_gain = 1.f; } else { // In all other cases, bound the gain for upper frequencies. RTC_DCHECK_LE(low_band_energy, high_band_energy); RTC_DCHECK_NE(0.f, high_band_energy); anti_howling_gain = 0.01f * sqrtf(low_band_energy / high_band_energy); } // Choose the gain as the minimum of the lower and upper gains. return std::min(gain_below_8_khz, anti_howling_gain); } // Limits the gain increase. void UpdateMaxGainIncrease( size_t no_saturation_counter, bool low_noise_render, const std::array& last_echo, const std::array& echo, const std::array& last_gain, const std::array& new_gain, std::array* gain_increase) { float max_increasing; float max_decreasing; float rate_increasing; float rate_decreasing; float min_increasing; float min_decreasing; if (low_noise_render) { max_increasing = 8.f; max_decreasing = 8.f; rate_increasing = 2.f; rate_decreasing = 2.f; min_increasing = 4.f; min_decreasing = 4.f; } else if (no_saturation_counter > 10) { max_increasing = 4.f; max_decreasing = 4.f; rate_increasing = 2.f; rate_decreasing = 2.f; min_increasing = 1.2f; min_decreasing = 2.f; } else { max_increasing = 1.2f; max_decreasing = 1.2f; rate_increasing = 1.5f; rate_decreasing = 1.5f; min_increasing = 1.f; min_decreasing = 1.f; } for (size_t k = 0; k < new_gain.size(); ++k) { if (echo[k] > last_echo[k]) { (*gain_increase)[k] = new_gain[k] > last_gain[k] ? std::min(max_increasing, (*gain_increase)[k] * rate_increasing) : min_increasing; } else { (*gain_increase)[k] = new_gain[k] > last_gain[k] ? std::min(max_decreasing, (*gain_increase)[k] * rate_decreasing) : min_decreasing; } } } // Computes the gain to reduce the echo to a non audible level. void GainToNoAudibleEcho( bool low_noise_render, bool saturated_echo, const std::array& nearend, const std::array& echo, const std::array& masker, const std::array& min_gain, const std::array& max_gain, const std::array& one_by_echo, std::array* gain) { constexpr float kEchoMaskingMargin = 1.f / 100.f; const float nearend_masking_margin = low_noise_render ? 0.1f : (saturated_echo ? 0.001f : 0.01f); for (size_t k = 0; k < gain->size(); ++k) { RTC_DCHECK_LE(0.f, nearend_masking_margin * nearend[k]); if (echo[k] <= nearend_masking_margin * nearend[k]) { (*gain)[k] = 1.f; } else { (*gain)[k] = kEchoMaskingMargin * masker[k] * one_by_echo[k]; } (*gain)[k] = std::min(std::max((*gain)[k], min_gain[k]), max_gain[k]); } } // Computes the signal output power that masks the echo signal. void MaskingPower(const std::array& nearend, const std::array& comfort_noise, const std::array& last_masker, const std::array& gain, std::array* masker) { std::array side_band_masker; for (size_t k = 0; k < gain.size(); ++k) { side_band_masker[k] = nearend[k] * gain[k] + comfort_noise[k]; (*masker)[k] = comfort_noise[k] + 0.1f * last_masker[k]; } for (size_t k = 1; k < gain.size() - 1; ++k) { (*masker)[k] += 0.1f * (side_band_masker[k - 1] + side_band_masker[k + 1]); } } } // namespace // TODO(peah): Add further optimizations, in particular for the divisions. void SuppressionGain::LowerBandGain( bool low_noise_render, const rtc::Optional& narrow_peak_band, bool saturated_echo, const std::array& nearend, const std::array& echo, const std::array& comfort_noise, std::array* gain) { // Count the number of blocks since saturation. no_saturation_counter_ = saturated_echo ? 0 : no_saturation_counter_ + 1; // Precompute 1/echo (note that when the echo is zero, the precomputed value // is never used). std::array one_by_echo; std::transform(echo.begin(), echo.end(), one_by_echo.begin(), [](float a) { return a > 0.f ? 1.f / a : 1.f; }); // Compute the minimum gain as the attenuating gain to put the signal just // above the zero sample values. std::array min_gain; const float min_echo_power = low_noise_render ? 192.f : 64.f; if (no_saturation_counter_ > 10) { for (size_t k = 0; k < nearend.size(); ++k) { const float denom = std::min(nearend[k], echo[k]); min_gain[k] = denom > 0.f ? min_echo_power / denom : 1.f; min_gain[k] = std::min(min_gain[k], 1.f); } } else { min_gain.fill(0.f); } // Compute the maximum gain by limiting the gain increase from the previous // gain. std::array max_gain; for (size_t k = 0; k < gain->size(); ++k) { max_gain[k] = std::min(std::max(last_gain_[k] * gain_increase_[k], 0.001f), 1.f); } // Iteratively compute the gain required to attenuate the echo to a non // noticeable level. gain->fill(0.f); for (int k = 0; k < 2; ++k) { std::array masker; MaskingPower(nearend, comfort_noise, last_masker_, *gain, &masker); GainToNoAudibleEcho(low_noise_render, saturated_echo, nearend, echo, masker, min_gain, max_gain, one_by_echo, gain); AdjustForExternalFilters(gain); if (narrow_peak_band) { NarrowBandAttenuation(*narrow_peak_band, gain); } } // Update the allowed maximum gain increase. UpdateMaxGainIncrease(no_saturation_counter_, low_noise_render, last_echo_, echo, last_gain_, *gain, &gain_increase_); // Store data required for the gain computation of the next block. std::copy(echo.begin(), echo.end(), last_echo_.begin()); std::copy(gain->begin(), gain->end(), last_gain_.begin()); MaskingPower(nearend, comfort_noise, last_masker_, *gain, &last_masker_); aec3::VectorMath(optimization_).Sqrt(*gain); } SuppressionGain::SuppressionGain(Aec3Optimization optimization) : optimization_(optimization) { last_gain_.fill(1.f); last_masker_.fill(0.f); gain_increase_.fill(1.f); last_echo_.fill(0.f); } void SuppressionGain::GetGain( const std::array& nearend, const std::array& echo, const std::array& comfort_noise, const RenderSignalAnalyzer& render_signal_analyzer, bool saturated_echo, const std::vector>& render, bool force_zero_gain, float* high_bands_gain, std::array* low_band_gain) { RTC_DCHECK(high_bands_gain); RTC_DCHECK(low_band_gain); if (force_zero_gain) { last_gain_.fill(0.f); std::copy(comfort_noise.begin(), comfort_noise.end(), last_masker_.begin()); low_band_gain->fill(0.f); gain_increase_.fill(1.f); *high_bands_gain = 0.f; return; } bool low_noise_render = low_render_detector_.Detect(render); // Compute gain for the lower band. const rtc::Optional narrow_peak_band = render_signal_analyzer.NarrowPeakBand(); LowerBandGain(low_noise_render, narrow_peak_band, saturated_echo, nearend, echo, comfort_noise, low_band_gain); // Compute the gain for the upper bands. *high_bands_gain = UpperBandsGain(narrow_peak_band, saturated_echo, render, *low_band_gain); } // Detects when the render signal can be considered to have low power and // consist of stationary noise. bool SuppressionGain::LowNoiseRenderDetector::Detect( const std::vector>& render) { float x2_sum = 0.f; float x2_max = 0.f; for (auto x_k : render[0]) { const float x2 = x_k * x_k; x2_sum += x2; x2_max = std::max(x2_max, x2); } constexpr float kThreshold = 50.f * 50.f * 64.f; const bool low_noise_render = average_power_ < kThreshold && x2_max < 3 * average_power_; average_power_ = average_power_ * 0.9f + x2_sum * 0.1f; return low_noise_render; } } // namespace webrtc