/* * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "video/encoder_overshoot_detector.h" #include namespace webrtc { EncoderOvershootDetector::EncoderOvershootDetector(int64_t window_size_ms) : window_size_ms_(window_size_ms), time_last_update_ms_(-1), sum_utilization_factors_(0.0), target_bitrate_(DataRate::Zero()), target_framerate_fps_(0), buffer_level_bits_(0) {} EncoderOvershootDetector::~EncoderOvershootDetector() = default; void EncoderOvershootDetector::SetTargetRate(DataRate target_bitrate, double target_framerate_fps, int64_t time_ms) { // First leak bits according to the previous target rate. if (target_bitrate_ != DataRate::Zero()) { LeakBits(time_ms); } else if (target_bitrate != DataRate::Zero()) { // Stream was just enabled, reset state. time_last_update_ms_ = time_ms; utilization_factors_.clear(); sum_utilization_factors_ = 0.0; buffer_level_bits_ = 0; } target_bitrate_ = target_bitrate; target_framerate_fps_ = target_framerate_fps; } void EncoderOvershootDetector::OnEncodedFrame(size_t bytes, int64_t time_ms) { // Leak bits from the virtual pacer buffer, according to the current target // bitrate. LeakBits(time_ms); // Ideal size of a frame given the current rates. const int64_t ideal_frame_size = IdealFrameSizeBits(); if (ideal_frame_size == 0) { // Frame without updated bitrate and/or framerate, ignore it. return; } // Add new frame to the buffer level. If doing so exceeds the ideal buffer // size, penalize this frame but cap overshoot to current buffer level rather // than size of this frame. This is done so that a single large frame is not // penalized if the encoder afterwards compensates by dropping frames and/or // reducing frame size. If however a large frame is followed by more data, // we cannot pace that next frame out within one frame space. const int64_t bitsum = (bytes * 8) + buffer_level_bits_; int64_t overshoot_bits = 0; if (bitsum > ideal_frame_size) { overshoot_bits = std::min(buffer_level_bits_, bitsum - ideal_frame_size); } // Add entry for the (over) utilization for this frame. Factor is capped // at 1.0 so that we don't risk overshooting on sudden changes. double frame_utilization_factor; if (utilization_factors_.empty()) { // First frame, cannot estimate overshoot based on previous one so // for this particular frame, just like as size vs optimal size. frame_utilization_factor = std::max(1.0, static_cast(bytes) * 8 / ideal_frame_size); } else { frame_utilization_factor = 1.0 + (static_cast(overshoot_bits) / ideal_frame_size); } utilization_factors_.emplace_back(frame_utilization_factor, time_ms); sum_utilization_factors_ += frame_utilization_factor; // Remove the overshot bits from the virtual buffer so we don't penalize // those bits multiple times. buffer_level_bits_ -= overshoot_bits; buffer_level_bits_ += bytes * 8; } absl::optional EncoderOvershootDetector::GetUtilizationFactor( int64_t time_ms) { // Cull old data points. const int64_t cutoff_time_ms = time_ms - window_size_ms_; while (!utilization_factors_.empty() && utilization_factors_.front().update_time_ms < cutoff_time_ms) { // Make sure sum is never allowed to become negative due rounding errors. sum_utilization_factors_ = std::max(0.0, sum_utilization_factors_ - utilization_factors_.front().utilization_factor); utilization_factors_.pop_front(); } // No data points within window, return. if (utilization_factors_.empty()) { return absl::nullopt; } // TODO(sprang): Consider changing from arithmetic mean to some other // function such as 90th percentile. return sum_utilization_factors_ / utilization_factors_.size(); } void EncoderOvershootDetector::Reset() { time_last_update_ms_ = -1; utilization_factors_.clear(); target_bitrate_ = DataRate::Zero(); sum_utilization_factors_ = 0.0; target_framerate_fps_ = 0.0; buffer_level_bits_ = 0; } int64_t EncoderOvershootDetector::IdealFrameSizeBits() const { if (target_framerate_fps_ <= 0 || target_bitrate_ == DataRate::Zero()) { return 0; } // Current ideal frame size, based on the current target bitrate. return static_cast( (target_bitrate_.bps() + target_framerate_fps_ / 2) / target_framerate_fps_); } void EncoderOvershootDetector::LeakBits(int64_t time_ms) { if (time_last_update_ms_ != -1 && target_bitrate_ > DataRate::Zero()) { int64_t time_delta_ms = time_ms - time_last_update_ms_; // Leak bits according to the current target bitrate. int64_t leaked_bits = std::min( buffer_level_bits_, (target_bitrate_.bps() * time_delta_ms) / 1000); buffer_level_bits_ -= leaked_bits; } time_last_update_ms_ = time_ms; } } // namespace webrtc