/* * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "video/encoder_bitrate_adjuster.h" #include #include "absl/memory/memory.h" #include "api/units/data_rate.h" #include "rtc_base/fake_clock.h" #include "rtc_base/numerics/safe_conversions.h" #include "test/gtest.h" namespace webrtc { class EncoderBitrateAdjusterTest : public ::testing::Test { public: static constexpr int64_t kWindowSizeMs = 3000; static constexpr int kDefaultBitrateBps = 300000; static constexpr int kDefaultFrameRateFps = 30; EncoderBitrateAdjusterTest() : target_bitrate_(DataRate::bps(kDefaultBitrateBps)), target_framerate_fps_(kDefaultFrameRateFps), tl_pattern_idx_{} {} protected: void SetUpAdjuster(size_t num_spatial_layers, size_t num_temporal_layers, bool vp9_svc) { // Initialize some default VideoCodec instance with the given number of // layers. if (vp9_svc) { codec_.codecType = VideoCodecType::kVideoCodecVP9; codec_.numberOfSimulcastStreams = 1; codec_.VP9()->numberOfSpatialLayers = num_spatial_layers; codec_.VP9()->numberOfTemporalLayers = num_temporal_layers; for (size_t si = 0; si < num_spatial_layers; ++si) { codec_.spatialLayers[si].minBitrate = 100 * (1 << si); codec_.spatialLayers[si].targetBitrate = 200 * (1 << si); codec_.spatialLayers[si].maxBitrate = 300 * (1 << si); codec_.spatialLayers[si].active = true; codec_.spatialLayers[si].numberOfTemporalLayers = num_temporal_layers; } } else { codec_.codecType = VideoCodecType::kVideoCodecVP8; codec_.numberOfSimulcastStreams = num_spatial_layers; codec_.VP8()->numberOfTemporalLayers = num_temporal_layers; for (size_t si = 0; si < num_spatial_layers; ++si) { codec_.simulcastStream[si].minBitrate = 100 * (1 << si); codec_.simulcastStream[si].targetBitrate = 200 * (1 << si); codec_.simulcastStream[si].maxBitrate = 300 * (1 << si); codec_.simulcastStream[si].active = true; codec_.simulcastStream[si].numberOfTemporalLayers = num_temporal_layers; } } for (size_t si = 0; si < num_spatial_layers; ++si) { encoder_info_.fps_allocation[si].resize(num_temporal_layers); double fraction = 1.0; for (int ti = num_temporal_layers - 1; ti >= 0; --ti) { encoder_info_.fps_allocation[si][ti] = static_cast( VideoEncoder::EncoderInfo::kMaxFramerateFraction * fraction + 0.5); fraction /= 2.0; } } adjuster_ = absl::make_unique(codec_); adjuster_->OnEncoderInfo(encoder_info_); current_adjusted_allocation_ = adjuster_->AdjustRateAllocation( current_input_allocation_, target_framerate_fps_); } void InsertFrames(std::vector> utilization_factors, int64_t duration_ms) { constexpr size_t kMaxFrameSize = 100000; uint8_t buffer[kMaxFrameSize]; const int64_t start_us = rtc::TimeMicros(); while (rtc::TimeMicros() < start_us + (duration_ms * rtc::kNumMicrosecsPerMillisec)) { clock_.AdvanceTimeMicros(rtc::kNumMicrosecsPerSec / target_framerate_fps_); for (size_t si = 0; si < NumSpatialLayers(); ++si) { const std::vector& tl_pattern = kTlPatterns[NumTemporalLayers(si) - 1]; const size_t ti = tl_pattern[(tl_pattern_idx_[si]++) % tl_pattern.size()]; uint32_t layer_bitrate_bps = current_adjusted_allocation_.GetBitrate(si, ti); double layer_framerate_fps = target_framerate_fps_; if (encoder_info_.fps_allocation[si].size() > ti) { uint8_t layer_fps_fraction = encoder_info_.fps_allocation[si][ti]; if (ti > 0) { // We're interested in the frame rate for this layer only, not // cumulative frame rate. layer_fps_fraction -= encoder_info_.fps_allocation[si][ti - 1]; } layer_framerate_fps = (target_framerate_fps_ * layer_fps_fraction) / VideoEncoder::EncoderInfo::kMaxFramerateFraction; } double utilization_factor = 1.0; if (utilization_factors.size() > si && utilization_factors[si].size() > ti) { utilization_factor = utilization_factors[si][ti]; } size_t frame_size_bytes = utilization_factor * (layer_bitrate_bps / 8.0) / layer_framerate_fps; EncodedImage image(buffer, 0, kMaxFrameSize); image.set_size(frame_size_bytes); image.SetSpatialIndex(si); adjuster_->OnEncodedFrame(image, ti); } } } size_t NumSpatialLayers() const { if (codec_.codecType == VideoCodecType::kVideoCodecVP9) { return codec_.VP9().numberOfSpatialLayers; } return codec_.numberOfSimulcastStreams; } size_t NumTemporalLayers(int spatial_index) { if (codec_.codecType == VideoCodecType::kVideoCodecVP9) { return codec_.spatialLayers[spatial_index].numberOfTemporalLayers; } return codec_.simulcastStream[spatial_index].numberOfTemporalLayers; } void ExpectNear(const VideoBitrateAllocation& expected_allocation, const VideoBitrateAllocation& actual_allocation, double allowed_error_fraction) { for (size_t si = 0; si < kMaxSpatialLayers; ++si) { for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) { if (expected_allocation.HasBitrate(si, ti)) { EXPECT_TRUE(actual_allocation.HasBitrate(si, ti)); uint32_t expected_layer_bitrate_bps = expected_allocation.GetBitrate(si, ti); EXPECT_NEAR(expected_layer_bitrate_bps, actual_allocation.GetBitrate(si, ti), static_cast(expected_layer_bitrate_bps * allowed_error_fraction)); } else { EXPECT_FALSE(actual_allocation.HasBitrate(si, ti)); } } } } VideoBitrateAllocation MultiplyAllocation( const VideoBitrateAllocation& allocation, double factor) { VideoBitrateAllocation multiplied_allocation; for (size_t si = 0; si < kMaxSpatialLayers; ++si) { for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) { if (allocation.HasBitrate(si, ti)) { multiplied_allocation.SetBitrate( si, ti, static_cast(factor * allocation.GetBitrate(si, ti) + 0.5)); } } } return multiplied_allocation; } VideoCodec codec_; VideoEncoder::EncoderInfo encoder_info_; std::unique_ptr adjuster_; VideoBitrateAllocation current_input_allocation_; VideoBitrateAllocation current_adjusted_allocation_; rtc::ScopedFakeClock clock_; DataRate target_bitrate_; double target_framerate_fps_; int tl_pattern_idx_[kMaxSpatialLayers]; const std::vector kTlPatterns[kMaxTemporalStreams] = { {0}, {0, 1}, {0, 2, 1, 2}, {0, 3, 2, 3, 1, 3, 2, 3}}; }; TEST_F(EncoderBitrateAdjusterTest, SingleLayerOptimal) { // Single layer, well behaved encoder. current_input_allocation_.SetBitrate(0, 0, 300000); target_framerate_fps_ = 30; SetUpAdjuster(1, 1, false); InsertFrames({{1.0}}, kWindowSizeMs); current_adjusted_allocation_ = adjuster_->AdjustRateAllocation( current_input_allocation_, target_framerate_fps_); // Adjusted allocation near input. Allow 1% error margin due to rounding // errors etc. ExpectNear(current_input_allocation_, current_adjusted_allocation_, 0.01); } TEST_F(EncoderBitrateAdjusterTest, SingleLayerOveruse) { // Single layer, well behaved encoder. current_input_allocation_.SetBitrate(0, 0, 300000); target_framerate_fps_ = 30; SetUpAdjuster(1, 1, false); InsertFrames({{1.2}}, kWindowSizeMs); current_adjusted_allocation_ = adjuster_->AdjustRateAllocation( current_input_allocation_, target_framerate_fps_); // Adjusted allocation lowered by 20%. ExpectNear(MultiplyAllocation(current_input_allocation_, 1 / 1.2), current_adjusted_allocation_, 0.01); } TEST_F(EncoderBitrateAdjusterTest, SingleLayerUnderuse) { // Single layer, well behaved encoder. current_input_allocation_.SetBitrate(0, 0, 300000); target_framerate_fps_ = 30; SetUpAdjuster(1, 1, false); InsertFrames({{0.5}}, kWindowSizeMs); current_adjusted_allocation_ = adjuster_->AdjustRateAllocation( current_input_allocation_, target_framerate_fps_); // Undershoot, adjusted should exactly match input. ExpectNear(current_input_allocation_, current_adjusted_allocation_, 0.00); } TEST_F(EncoderBitrateAdjusterTest, ThreeTemporalLayersOptimalSize) { // Three temporal layers, 60%/20%/20% bps distro, well behaved encoder. current_input_allocation_.SetBitrate(0, 0, 180000); current_input_allocation_.SetBitrate(0, 1, 60000); current_input_allocation_.SetBitrate(0, 2, 60000); target_framerate_fps_ = 30; SetUpAdjuster(1, 3, false); InsertFrames({{1.0, 1.0, 1.0}}, kWindowSizeMs); current_adjusted_allocation_ = adjuster_->AdjustRateAllocation( current_input_allocation_, target_framerate_fps_); ExpectNear(current_input_allocation_, current_adjusted_allocation_, 0.01); } TEST_F(EncoderBitrateAdjusterTest, ThreeTemporalLayersOvershoot) { // Three temporal layers, 60%/20%/20% bps distro. // 10% overshoot on all layers. current_input_allocation_.SetBitrate(0, 0, 180000); current_input_allocation_.SetBitrate(0, 1, 60000); current_input_allocation_.SetBitrate(0, 2, 60000); target_framerate_fps_ = 30; SetUpAdjuster(1, 3, false); InsertFrames({{1.1, 1.1, 1.1}}, kWindowSizeMs); current_adjusted_allocation_ = adjuster_->AdjustRateAllocation( current_input_allocation_, target_framerate_fps_); // Adjusted allocation lowered by 10%. ExpectNear(MultiplyAllocation(current_input_allocation_, 1 / 1.1), current_adjusted_allocation_, 0.01); } TEST_F(EncoderBitrateAdjusterTest, ThreeTemporalLayersUndershoot) { // Three temporal layers, 60%/20%/20% bps distro, undershoot all layers. current_input_allocation_.SetBitrate(0, 0, 180000); current_input_allocation_.SetBitrate(0, 1, 60000); current_input_allocation_.SetBitrate(0, 2, 60000); target_framerate_fps_ = 30; SetUpAdjuster(1, 3, false); InsertFrames({{0.8, 0.8, 0.8}}, kWindowSizeMs); current_adjusted_allocation_ = adjuster_->AdjustRateAllocation( current_input_allocation_, target_framerate_fps_); // Adjusted allocation identical since we don't boost bitrates. ExpectNear(current_input_allocation_, current_adjusted_allocation_, 0.0); } TEST_F(EncoderBitrateAdjusterTest, ThreeTemporalLayersSkewedOvershoot) { // Three temporal layers, 60%/20%/20% bps distro. // 10% overshoot on base layer, 20% on higher layers. current_input_allocation_.SetBitrate(0, 0, 180000); current_input_allocation_.SetBitrate(0, 1, 60000); current_input_allocation_.SetBitrate(0, 2, 60000); target_framerate_fps_ = 30; SetUpAdjuster(1, 3, false); InsertFrames({{1.1, 1.2, 1.2}}, kWindowSizeMs); current_adjusted_allocation_ = adjuster_->AdjustRateAllocation( current_input_allocation_, target_framerate_fps_); // Expected overshoot is weighted by bitrate: // (0.6 * 1.1 + 0.2 * 1.2 + 0.2 * 1.2) = 1.14 ExpectNear(MultiplyAllocation(current_input_allocation_, 1 / 1.14), current_adjusted_allocation_, 0.01); } TEST_F(EncoderBitrateAdjusterTest, FourTemporalLayersSkewedOvershoot) { // Three temporal layers, 40%/30%/15%/15% bps distro. // 10% overshoot on base layer, 20% on higher layers. current_input_allocation_.SetBitrate(0, 0, 120000); current_input_allocation_.SetBitrate(0, 1, 90000); current_input_allocation_.SetBitrate(0, 2, 45000); current_input_allocation_.SetBitrate(0, 3, 45000); target_framerate_fps_ = 30; SetUpAdjuster(1, 4, false); InsertFrames({{1.1, 1.2, 1.2, 1.2}}, kWindowSizeMs); current_adjusted_allocation_ = adjuster_->AdjustRateAllocation( current_input_allocation_, target_framerate_fps_); // Expected overshoot is weighted by bitrate: // (0.4 * 1.1 + 0.3 * 1.2 + 0.15 * 1.2 + 0.15 * 1.2) = 1.16 ExpectNear(MultiplyAllocation(current_input_allocation_, 1 / 1.16), current_adjusted_allocation_, 0.01); } TEST_F(EncoderBitrateAdjusterTest, ThreeTemporalLayersNonLayeredEncoder) { // Three temporal layers, 60%/20%/20% bps allocation, 10% overshoot, // encoder does not actually support temporal layers. current_input_allocation_.SetBitrate(0, 0, 180000); current_input_allocation_.SetBitrate(0, 1, 60000); current_input_allocation_.SetBitrate(0, 2, 60000); target_framerate_fps_ = 30; SetUpAdjuster(1, 1, false); InsertFrames({{1.1}}, kWindowSizeMs); current_adjusted_allocation_ = adjuster_->AdjustRateAllocation( current_input_allocation_, target_framerate_fps_); // Expect the actual 10% overuse to be detected and the allocation to // only contain the one entry. VideoBitrateAllocation expected_allocation; expected_allocation.SetBitrate( 0, 0, static_cast(current_input_allocation_.get_sum_bps() / 1.10)); ExpectNear(expected_allocation, current_adjusted_allocation_, 0.01); } TEST_F(EncoderBitrateAdjusterTest, IgnoredStream) { // Encoder with three temporal layers, but in a mode that does not support // deterministic frame rate. Those are ignored, even if bitrate overshoots. current_input_allocation_.SetBitrate(0, 0, 180000); current_input_allocation_.SetBitrate(0, 1, 60000); target_framerate_fps_ = 30; SetUpAdjuster(1, 1, false); encoder_info_.fps_allocation[0].clear(); adjuster_->OnEncoderInfo(encoder_info_); InsertFrames({{1.1}}, kWindowSizeMs); current_adjusted_allocation_ = adjuster_->AdjustRateAllocation( current_input_allocation_, target_framerate_fps_); // Values passed through. ExpectNear(current_input_allocation_, current_adjusted_allocation_, 0.00); } TEST_F(EncoderBitrateAdjusterTest, DifferentSpatialOvershoots) { // Two streams, both with three temporal layers. // S0 has 5% overshoot, S1 has 25% overshoot. current_input_allocation_.SetBitrate(0, 0, 180000); current_input_allocation_.SetBitrate(0, 1, 60000); current_input_allocation_.SetBitrate(0, 2, 60000); current_input_allocation_.SetBitrate(1, 0, 400000); current_input_allocation_.SetBitrate(1, 1, 150000); current_input_allocation_.SetBitrate(1, 2, 150000); target_framerate_fps_ = 30; // Run twice, once configured as simulcast and once as VP9 SVC. for (int i = 0; i < 2; ++i) { SetUpAdjuster(2, 3, i == 0); InsertFrames({{1.05, 1.05, 1.05}, {1.25, 1.25, 1.25}}, kWindowSizeMs); current_adjusted_allocation_ = adjuster_->AdjustRateAllocation( current_input_allocation_, target_framerate_fps_); VideoBitrateAllocation expected_allocation; for (size_t ti = 0; ti < 3; ++ti) { expected_allocation.SetBitrate( 0, ti, static_cast(current_input_allocation_.GetBitrate(0, ti) / 1.05)); expected_allocation.SetBitrate( 1, ti, static_cast(current_input_allocation_.GetBitrate(1, ti) / 1.25)); } ExpectNear(expected_allocation, current_adjusted_allocation_, 0.01); } } } // namespace webrtc