/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/pacing/paced_sender.h" #include #include #include "absl/memory/memory.h" #include "logging/rtc_event_log/rtc_event_log.h" #include "modules/congestion_controller/goog_cc/alr_detector.h" #include "modules/pacing/bitrate_prober.h" #include "modules/pacing/interval_budget.h" #include "modules/utility/include/process_thread.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "system_wrappers/include/clock.h" namespace webrtc { namespace { // Time limit in milliseconds between packet bursts. const int64_t kDefaultMinPacketLimitMs = 5; const int64_t kCongestedPacketIntervalMs = 500; const int64_t kPausedProcessIntervalMs = kCongestedPacketIntervalMs; const int64_t kMaxElapsedTimeMs = 2000; // Upper cap on process interval, in case process has not been called in a long // time. const int64_t kMaxIntervalTimeMs = 30; bool IsDisabled(const WebRtcKeyValueConfig& field_trials, absl::string_view key) { return field_trials.Lookup(key).find("Disabled") == 0; } bool IsEnabled(const WebRtcKeyValueConfig& field_trials, absl::string_view key) { return field_trials.Lookup(key).find("Enabled") == 0; } } // namespace const int64_t PacedSender::kMaxQueueLengthMs = 2000; const float PacedSender::kDefaultPaceMultiplier = 2.5f; PacedSender::PacedSender(Clock* clock, PacketSender* packet_sender, RtcEventLog* event_log, const WebRtcKeyValueConfig* field_trials) : PacedSender(clock, packet_sender, event_log, field_trials ? *field_trials : static_cast( FieldTrialBasedConfig())) {} PacedSender::PacedSender(Clock* clock, PacketSender* packet_sender, RtcEventLog* event_log, const WebRtcKeyValueConfig& field_trials) : clock_(clock), packet_sender_(packet_sender), alr_detector_(), drain_large_queues_(!IsDisabled(field_trials, "WebRTC-Pacer-DrainQueue")), send_padding_if_silent_( IsEnabled(field_trials, "WebRTC-Pacer-PadInSilence")), pace_audio_(!IsDisabled(field_trials, "WebRTC-Pacer-BlockAudio")), min_packet_limit_ms_("", kDefaultMinPacketLimitMs), last_timestamp_ms_(clock_->TimeInMilliseconds()), paused_(false), media_budget_(0), padding_budget_(0), prober_(event_log), probing_send_failure_(false), estimated_bitrate_bps_(0), min_send_bitrate_kbps_(0u), max_padding_bitrate_kbps_(0u), pacing_bitrate_kbps_(0), time_last_process_us_(clock->TimeInMicroseconds()), last_send_time_us_(clock->TimeInMicroseconds()), first_sent_packet_ms_(-1), packets_(clock->TimeInMicroseconds()), packet_counter_(0), pacing_factor_(kDefaultPaceMultiplier), queue_time_limit(kMaxQueueLengthMs), account_for_audio_(false) { if (!drain_large_queues_) { RTC_LOG(LS_WARNING) << "Pacer queues will not be drained," "pushback experiment must be enabled."; } ParseFieldTrial({&min_packet_limit_ms_}, field_trials.Lookup("WebRTC-Pacer-MinPacketLimitMs")); UpdateBudgetWithElapsedTime(min_packet_limit_ms_); } PacedSender::~PacedSender() {} void PacedSender::CreateProbeCluster(int bitrate_bps, int cluster_id) { rtc::CritScope cs(&critsect_); prober_.CreateProbeCluster(bitrate_bps, TimeMilliseconds(), cluster_id); } void PacedSender::Pause() { { rtc::CritScope cs(&critsect_); if (!paused_) RTC_LOG(LS_INFO) << "PacedSender paused."; paused_ = true; packets_.SetPauseState(true, TimeMilliseconds()); } rtc::CritScope cs(&process_thread_lock_); // Tell the process thread to call our TimeUntilNextProcess() method to get // a new (longer) estimate for when to call Process(). if (process_thread_) process_thread_->WakeUp(this); } void PacedSender::Resume() { { rtc::CritScope cs(&critsect_); if (paused_) RTC_LOG(LS_INFO) << "PacedSender resumed."; paused_ = false; packets_.SetPauseState(false, TimeMilliseconds()); } rtc::CritScope cs(&process_thread_lock_); // Tell the process thread to call our TimeUntilNextProcess() method to // refresh the estimate for when to call Process(). if (process_thread_) process_thread_->WakeUp(this); } void PacedSender::SetCongestionWindow(int64_t congestion_window_bytes) { rtc::CritScope cs(&critsect_); congestion_window_bytes_ = congestion_window_bytes; } void PacedSender::UpdateOutstandingData(int64_t outstanding_bytes) { rtc::CritScope cs(&critsect_); outstanding_bytes_ = outstanding_bytes; } bool PacedSender::Congested() const { if (congestion_window_bytes_ == kNoCongestionWindow) return false; return outstanding_bytes_ >= congestion_window_bytes_; } int64_t PacedSender::TimeMilliseconds() const { int64_t time_ms = clock_->TimeInMilliseconds(); if (time_ms < last_timestamp_ms_) { RTC_LOG(LS_WARNING) << "Non-monotonic clock behavior observed. Previous timestamp: " << last_timestamp_ms_ << ", new timestamp: " << time_ms; RTC_DCHECK_GE(time_ms, last_timestamp_ms_); time_ms = last_timestamp_ms_; } last_timestamp_ms_ = time_ms; return time_ms; } void PacedSender::SetProbingEnabled(bool enabled) { rtc::CritScope cs(&critsect_); RTC_CHECK_EQ(0, packet_counter_); prober_.SetEnabled(enabled); } void PacedSender::SetEstimatedBitrate(uint32_t bitrate_bps) { if (bitrate_bps == 0) RTC_LOG(LS_ERROR) << "PacedSender is not designed to handle 0 bitrate."; rtc::CritScope cs(&critsect_); estimated_bitrate_bps_ = bitrate_bps; padding_budget_.set_target_rate_kbps( std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_)); pacing_bitrate_kbps_ = std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) * pacing_factor_; if (!alr_detector_) alr_detector_ = absl::make_unique(nullptr /*event_log*/); alr_detector_->SetEstimatedBitrate(bitrate_bps); } void PacedSender::SetSendBitrateLimits(int min_send_bitrate_bps, int padding_bitrate) { rtc::CritScope cs(&critsect_); min_send_bitrate_kbps_ = min_send_bitrate_bps / 1000; pacing_bitrate_kbps_ = std::max(min_send_bitrate_kbps_, estimated_bitrate_bps_ / 1000) * pacing_factor_; max_padding_bitrate_kbps_ = padding_bitrate / 1000; padding_budget_.set_target_rate_kbps( std::min(estimated_bitrate_bps_ / 1000, max_padding_bitrate_kbps_)); } void PacedSender::SetPacingRates(uint32_t pacing_rate_bps, uint32_t padding_rate_bps) { rtc::CritScope cs(&critsect_); RTC_DCHECK(pacing_rate_bps > 0); pacing_bitrate_kbps_ = pacing_rate_bps / 1000; padding_budget_.set_target_rate_kbps(padding_rate_bps / 1000); } void PacedSender::InsertPacket(RtpPacketSender::Priority priority, uint32_t ssrc, uint16_t sequence_number, int64_t capture_time_ms, size_t bytes, bool retransmission) { rtc::CritScope cs(&critsect_); RTC_DCHECK(pacing_bitrate_kbps_ > 0) << "SetPacingRate must be called before InsertPacket."; int64_t now_ms = TimeMilliseconds(); prober_.OnIncomingPacket(bytes); if (capture_time_ms < 0) capture_time_ms = now_ms; packets_.Push(RoundRobinPacketQueue::Packet( priority, ssrc, sequence_number, capture_time_ms, now_ms, bytes, retransmission, packet_counter_++)); } void PacedSender::SetAccountForAudioPackets(bool account_for_audio) { rtc::CritScope cs(&critsect_); account_for_audio_ = account_for_audio; } int64_t PacedSender::ExpectedQueueTimeMs() const { rtc::CritScope cs(&critsect_); RTC_DCHECK_GT(pacing_bitrate_kbps_, 0); return static_cast(packets_.SizeInBytes() * 8 / pacing_bitrate_kbps_); } absl::optional PacedSender::GetApplicationLimitedRegionStartTime() { rtc::CritScope cs(&critsect_); if (!alr_detector_) alr_detector_ = absl::make_unique(nullptr /*event_log*/); return alr_detector_->GetApplicationLimitedRegionStartTime(); } size_t PacedSender::QueueSizePackets() const { rtc::CritScope cs(&critsect_); return packets_.SizeInPackets(); } int64_t PacedSender::QueueSizeBytes() const { rtc::CritScope cs(&critsect_); return packets_.SizeInBytes(); } int64_t PacedSender::FirstSentPacketTimeMs() const { rtc::CritScope cs(&critsect_); return first_sent_packet_ms_; } int64_t PacedSender::QueueInMs() const { rtc::CritScope cs(&critsect_); int64_t oldest_packet = packets_.OldestEnqueueTimeMs(); if (oldest_packet == 0) return 0; return TimeMilliseconds() - oldest_packet; } int64_t PacedSender::TimeUntilNextProcess() { rtc::CritScope cs(&critsect_); int64_t elapsed_time_us = clock_->TimeInMicroseconds() - time_last_process_us_; int64_t elapsed_time_ms = (elapsed_time_us + 500) / 1000; // When paused we wake up every 500 ms to send a padding packet to ensure // we won't get stuck in the paused state due to no feedback being received. if (paused_) return std::max(kPausedProcessIntervalMs - elapsed_time_ms, 0); if (prober_.IsProbing()) { int64_t ret = prober_.TimeUntilNextProbe(TimeMilliseconds()); if (ret > 0 || (ret == 0 && !probing_send_failure_)) return ret; } return std::max(min_packet_limit_ms_ - elapsed_time_ms, 0); } int64_t PacedSender::UpdateTimeAndGetElapsedMs(int64_t now_us) { int64_t elapsed_time_ms = (now_us - time_last_process_us_ + 500) / 1000; time_last_process_us_ = now_us; if (elapsed_time_ms > kMaxElapsedTimeMs) { RTC_LOG(LS_WARNING) << "Elapsed time (" << elapsed_time_ms << " ms) longer than expected, limiting to " << kMaxElapsedTimeMs << " ms"; elapsed_time_ms = kMaxElapsedTimeMs; } return elapsed_time_ms; } bool PacedSender::ShouldSendKeepalive(int64_t now_us) const { if (send_padding_if_silent_ || paused_ || Congested()) { // We send a padding packet every 500 ms to ensure we won't get stuck in // congested state due to no feedback being received. int64_t elapsed_since_last_send_us = now_us - last_send_time_us_; if (elapsed_since_last_send_us >= kCongestedPacketIntervalMs * 1000) { // We can not send padding unless a normal packet has first been sent. If // we do, timestamps get messed up. if (packet_counter_ > 0) { return true; } } } return false; } void PacedSender::Process() { rtc::CritScope cs(&critsect_); int64_t now_us = clock_->TimeInMicroseconds(); int64_t elapsed_time_ms = UpdateTimeAndGetElapsedMs(now_us); if (ShouldSendKeepalive(now_us)) { critsect_.Leave(); size_t bytes_sent = packet_sender_->TimeToSendPadding(1, PacedPacketInfo()); critsect_.Enter(); OnPaddingSent(bytes_sent); if (alr_detector_) alr_detector_->OnBytesSent(bytes_sent, now_us / 1000); } if (paused_) return; if (elapsed_time_ms > 0) { int target_bitrate_kbps = pacing_bitrate_kbps_; size_t queue_size_bytes = packets_.SizeInBytes(); if (queue_size_bytes > 0) { // Assuming equal size packets and input/output rate, the average packet // has avg_time_left_ms left to get queue_size_bytes out of the queue, if // time constraint shall be met. Determine bitrate needed for that. packets_.UpdateQueueTime(TimeMilliseconds()); if (drain_large_queues_) { int64_t avg_time_left_ms = std::max( 1, queue_time_limit - packets_.AverageQueueTimeMs()); int min_bitrate_needed_kbps = static_cast(queue_size_bytes * 8 / avg_time_left_ms); if (min_bitrate_needed_kbps > target_bitrate_kbps) target_bitrate_kbps = min_bitrate_needed_kbps; } } media_budget_.set_target_rate_kbps(target_bitrate_kbps); UpdateBudgetWithElapsedTime(elapsed_time_ms); } bool is_probing = prober_.IsProbing(); PacedPacketInfo pacing_info; size_t bytes_sent = 0; size_t recommended_probe_size = 0; if (is_probing) { pacing_info = prober_.CurrentCluster(); recommended_probe_size = prober_.RecommendedMinProbeSize(); } // The paused state is checked in the loop since it leaves the critical // section allowing the paused state to be changed from other code. while (!packets_.Empty() && !paused_) { const auto* packet = GetPendingPacket(pacing_info); if (packet == nullptr) break; critsect_.Leave(); bool success = packet_sender_->TimeToSendPacket( packet->ssrc, packet->sequence_number, packet->capture_time_ms, packet->retransmission, pacing_info); critsect_.Enter(); if (success) { bytes_sent += packet->bytes; // Send succeeded, remove it from the queue. OnPacketSent(packet); if (is_probing && bytes_sent > recommended_probe_size) break; } else { // Send failed, put it back into the queue. packets_.CancelPop(*packet); break; } } if (packets_.Empty() && !Congested()) { // We can not send padding unless a normal packet has first been sent. If we // do, timestamps get messed up. if (packet_counter_ > 0) { int padding_needed = static_cast(is_probing ? (recommended_probe_size - bytes_sent) : padding_budget_.bytes_remaining()); if (padding_needed > 0) { critsect_.Leave(); size_t padding_sent = packet_sender_->TimeToSendPadding(padding_needed, pacing_info); critsect_.Enter(); bytes_sent += padding_sent; OnPaddingSent(padding_sent); } } } if (is_probing) { probing_send_failure_ = bytes_sent == 0; if (!probing_send_failure_) prober_.ProbeSent(TimeMilliseconds(), bytes_sent); } if (alr_detector_) alr_detector_->OnBytesSent(bytes_sent, now_us / 1000); } void PacedSender::ProcessThreadAttached(ProcessThread* process_thread) { RTC_LOG(LS_INFO) << "ProcessThreadAttached 0x" << process_thread; rtc::CritScope cs(&process_thread_lock_); process_thread_ = process_thread; } const RoundRobinPacketQueue::Packet* PacedSender::GetPendingPacket( const PacedPacketInfo& pacing_info) { // Since we need to release the lock in order to send, we first pop the // element from the priority queue but keep it in storage, so that we can // reinsert it if send fails. const RoundRobinPacketQueue::Packet* packet = &packets_.BeginPop(); bool audio_packet = packet->priority == kHighPriority; bool apply_pacing = !audio_packet || pace_audio_; if (apply_pacing && (Congested() || (media_budget_.bytes_remaining() == 0 && pacing_info.probe_cluster_id == PacedPacketInfo::kNotAProbe))) { packets_.CancelPop(*packet); return nullptr; } return packet; } void PacedSender::OnPacketSent(const RoundRobinPacketQueue::Packet* packet) { if (first_sent_packet_ms_ == -1) first_sent_packet_ms_ = TimeMilliseconds(); bool audio_packet = packet->priority == kHighPriority; if (!audio_packet || account_for_audio_) { // Update media bytes sent. // TODO(eladalon): TimeToSendPacket() can also return |true| in some // situations where nothing actually ended up being sent to the network, // and we probably don't want to update the budget in such cases. // https://bugs.chromium.org/p/webrtc/issues/detail?id=8052 UpdateBudgetWithBytesSent(packet->bytes); last_send_time_us_ = clock_->TimeInMicroseconds(); } // Send succeeded, remove it from the queue. packets_.FinalizePop(*packet); } void PacedSender::OnPaddingSent(size_t bytes_sent) { if (bytes_sent > 0) { UpdateBudgetWithBytesSent(bytes_sent); } last_send_time_us_ = clock_->TimeInMicroseconds(); } void PacedSender::UpdateBudgetWithElapsedTime(int64_t delta_time_ms) { delta_time_ms = std::min(kMaxIntervalTimeMs, delta_time_ms); media_budget_.IncreaseBudget(delta_time_ms); padding_budget_.IncreaseBudget(delta_time_ms); } void PacedSender::UpdateBudgetWithBytesSent(size_t bytes_sent) { outstanding_bytes_ += bytes_sent; media_budget_.UseBudget(bytes_sent); padding_budget_.UseBudget(bytes_sent); } void PacedSender::SetPacingFactor(float pacing_factor) { rtc::CritScope cs(&critsect_); pacing_factor_ = pacing_factor; // Make sure new padding factor is applied immediately, otherwise we need to // wait for the send bitrate estimate to be updated before this takes effect. SetEstimatedBitrate(estimated_bitrate_bps_); } void PacedSender::SetQueueTimeLimit(int limit_ms) { rtc::CritScope cs(&critsect_); queue_time_limit = limit_ms; } } // namespace webrtc