/* * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "modules/audio_processing/agc2/rnn_vad/rnn.h" #include "modules/audio_processing/agc2/rnn_vad/test_utils.h" #include "rtc_base/checks.h" #include "test/gtest.h" #include "third_party/rnnoise/src/rnn_activations.h" #include "third_party/rnnoise/src/rnn_vad_weights.h" namespace webrtc { namespace rnn_vad { namespace test { using rnnoise::RectifiedLinearUnit; using rnnoise::SigmoidApproximated; namespace { void TestFullyConnectedLayer(FullyConnectedLayer* fc, rtc::ArrayView input_vector, const float expected_output) { RTC_CHECK(fc); fc->ComputeOutput(input_vector); const auto output = fc->GetOutput(); EXPECT_NEAR(expected_output, output[0], 3e-6f); } void TestGatedRecurrentLayer( GatedRecurrentLayer* gru, rtc::ArrayView input_sequence, rtc::ArrayView expected_output_sequence) { RTC_CHECK(gru); auto gru_output_view = gru->GetOutput(); const size_t input_sequence_length = rtc::CheckedDivExact(input_sequence.size(), gru->input_size()); const size_t output_sequence_length = rtc::CheckedDivExact(expected_output_sequence.size(), gru->output_size()); ASSERT_EQ(input_sequence_length, output_sequence_length) << "The test data length is invalid."; // Feed the GRU layer and check the output at every step. gru->Reset(); for (size_t i = 0; i < input_sequence_length; ++i) { SCOPED_TRACE(i); gru->ComputeOutput( input_sequence.subview(i * gru->input_size(), gru->input_size())); const auto expected_output = expected_output_sequence.subview( i * gru->output_size(), gru->output_size()); ExpectNearAbsolute(expected_output, gru_output_view, 3e-6f); } } } // namespace // Bit-exactness check for fully connected layers. TEST(RnnVadTest, CheckFullyConnectedLayerOutput) { const std::array bias = {-50}; const std::array weights = { 127, 127, 127, 127, 127, 20, 127, -126, -126, -54, 14, 125, -126, -126, 127, -125, -126, 127, -127, -127, -57, -30, 127, 80}; FullyConnectedLayer fc(24, 1, bias, weights, SigmoidApproximated); // Test on different inputs. { const std::array input_vector = { 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.215833917f, 0.290601075f, 0.238759011f, 0.244751841f, 0.f, 0.0461241305f, 0.106401242f, 0.223070428f, 0.630603909f, 0.690453172f, 0.f, 0.387645692f, 0.166913897f, 0.f, 0.0327451192f, 0.f, 0.136149868f, 0.446351469f}; TestFullyConnectedLayer(&fc, input_vector, 0.436567038f); } { const std::array input_vector = { 0.592162728f, 0.529089332f, 1.18205106f, 1.21736848f, 0.f, 0.470851123f, 0.130675942f, 0.320903003f, 0.305496395f, 0.0571633279f, 1.57001138f, 0.0182026215f, 0.0977443159f, 0.347477973f, 0.493206412f, 0.9688586f, 0.0320267938f, 0.244722098f, 0.312745273f, 0.f, 0.00650715502f, 0.312553257f, 1.62619662f, 0.782880902f}; TestFullyConnectedLayer(&fc, input_vector, 0.874741316f); } { const std::array input_vector = { 0.395022154f, 0.333681047f, 0.76302278f, 0.965480626f, 0.f, 0.941198349f, 0.0892967582f, 0.745046318f, 0.635769248f, 0.238564298f, 0.970656633f, 0.014159563f, 0.094203949f, 0.446816623f, 0.640755892f, 1.20532358f, 0.0254284926f, 0.283327013f, 0.726210058f, 0.0550272502f, 0.000344108557f, 0.369803518f, 1.56680179f, 0.997883797f}; TestFullyConnectedLayer(&fc, input_vector, 0.672785878f); } } TEST(RnnVadTest, CheckGatedRecurrentLayer) { const std::array bias = {96, -99, -81, -114, 49, 119, -118, 68, -76, 91, 121, 125}; const std::array weights = { 124, 9, 1, 116, -66, -21, -118, -110, 104, 75, -23, -51, -72, -111, 47, 93, 77, -98, 41, -8, 40, -23, -43, -107, 9, -73, 30, -32, -2, 64, -26, 91, -48, -24, -28, -104, 74, -46, 116, 15, 32, 52, -126, -38, -121, 12, -16, 110, -95, 66, -103, -35, -38, 3, -126, -61, 28, 98, -117, -43}; const std::array recurrent_weights = { -3, 87, 50, 51, -22, 27, -39, 62, 31, -83, -52, -48, -6, 83, -19, 104, 105, 48, 23, 68, 23, 40, 7, -120, 64, -62, 117, 85, -51, -43, 54, -105, 120, 56, -128, -107, 39, 50, -17, -47, -117, 14, 108, 12, -7, -72, 103, -87, -66, 82, 84, 100, -98, 102, -49, 44, 122, 106, -20, -69}; GatedRecurrentLayer gru(5, 4, bias, weights, recurrent_weights, RectifiedLinearUnit); // Test on different inputs. { const std::array input_sequence = { 0.89395463f, 0.93224651f, 0.55788344f, 0.32341808f, 0.93355054f, 0.13475326f, 0.97370994f, 0.14253306f, 0.93710381f, 0.76093364f, 0.65780413f, 0.41657975f, 0.49403164f, 0.46843281f, 0.75138855f, 0.24517593f, 0.47657707f, 0.57064998f, 0.435184f, 0.19319285f}; const std::array expected_output_sequence = { 0.0239123f, 0.5773077f, 0.f, 0.f, 0.01282811f, 0.64330572f, 0.f, 0.04863098f, 0.00781069f, 0.75267816f, 0.f, 0.02579715f, 0.00471378f, 0.59162533f, 0.11087593f, 0.01334511f}; TestGatedRecurrentLayer(&gru, input_sequence, expected_output_sequence); } } // TODO(bugs.webrtc.org/9076): Remove when the issue is fixed. // Bit-exactness test checking that precomputed frame-wise features lead to the // expected VAD probabilities. TEST(RnnVadTest, RnnBitExactness) { // Init. auto features_reader = CreateSilenceFlagsFeatureMatrixReader(); auto vad_probs_reader = CreateVadProbsReader(); ASSERT_EQ(features_reader.second, vad_probs_reader.second); const size_t num_frames = features_reader.second; // Frame-wise buffers. float expected_vad_probability; float is_silence; std::array features; // Compute VAD probability using the precomputed features. RnnBasedVad vad; for (size_t i = 0; i < num_frames; ++i) { SCOPED_TRACE(i); // Read frame data. RTC_CHECK(vad_probs_reader.first->ReadValue(&expected_vad_probability)); // The features file also includes a silence flag for each frame. RTC_CHECK(features_reader.first->ReadValue(&is_silence)); RTC_CHECK(features_reader.first->ReadChunk(features)); // Compute and check VAD probability. float vad_probability = vad.ComputeVadProbability(features, is_silence); ASSERT_TRUE(is_silence == 0.f || is_silence == 1.f); if (is_silence == 1.f) { ASSERT_EQ(0.f, expected_vad_probability); EXPECT_EQ(0.f, vad_probability); } else { EXPECT_NEAR(expected_vad_probability, vad_probability, 3e-6f); } } } } // namespace test } // namespace rnn_vad } // namespace webrtc