/* * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/base/criticalsection.h" #include "webrtc/base/scoped_ptr.h" #include "webrtc/modules/audio_device/android/ensure_initialized.h" #include "webrtc/modules/audio_device/audio_device_impl.h" #include "webrtc/modules/audio_device/include/audio_device.h" #include "webrtc/system_wrappers/interface/clock.h" #include "webrtc/system_wrappers/interface/event_wrapper.h" #include "webrtc/system_wrappers/interface/scoped_refptr.h" #include "webrtc/system_wrappers/interface/sleep.h" #include "webrtc/test/testsupport/fileutils.h" using std::cout; using std::endl; using ::testing::_; using ::testing::AtLeast; using ::testing::Gt; using ::testing::Invoke; using ::testing::NiceMock; using ::testing::NotNull; using ::testing::Return; using ::testing::TestWithParam; // #define ENABLE_DEBUG_PRINTF #ifdef ENABLE_DEBUG_PRINTF #define PRINTD(...) fprintf(stderr, __VA_ARGS__); #else #define PRINTD(...) ((void)0) #endif #define PRINT(...) fprintf(stderr, __VA_ARGS__); namespace webrtc { // Perform all tests for the different audio layers listed in this array. // See the INSTANTIATE_TEST_CASE_P statement for details. // TODO(henrika): the test framework supports both Java and OpenSL ES based // audio backends but there are currently some issues (crashes) in the // OpenSL ES implementation, hence it is not added to kAudioLayers yet. static const AudioDeviceModule::AudioLayer kAudioLayers[] = { AudioDeviceModule::kAndroidJavaAudio /*, AudioDeviceModule::kAndroidOpenSLESAudio */}; // Number of callbacks (input or output) the tests waits for before we set // an event indicating that the test was OK. static const int kNumCallbacks = 10; // Max amount of time we wait for an event to be set while counting callbacks. static const int kTestTimeOutInMilliseconds = 10 * 1000; // Average number of audio callbacks per second assuming 10ms packet size. static const int kNumCallbacksPerSecond = 100; // Play out a test file during this time (unit is in seconds). static const int kFilePlayTimeInSec = 5; // Fixed value for the recording delay using Java based audio backend. // TODO(henrika): harmonize with OpenSL ES and look for possible improvements. static const uint32_t kFixedRecordingDelay = 100; static const int kBitsPerSample = 16; static const int kBytesPerSample = kBitsPerSample / 8; // Run the full-duplex test during this time (unit is in seconds). // Note that first |kNumIgnoreFirstCallbacks| are ignored. static const int kFullDuplexTimeInSec = 10; // Wait for the callback sequence to stabilize by ignoring this amount of the // initial callbacks (avoids initial FIFO access). // Only used in the RunPlayoutAndRecordingInFullDuplex test. static const int kNumIgnoreFirstCallbacks = 50; // Sets the number of impulses per second in the latency test. static const int kImpulseFrequencyInHz = 1; // Length of round-trip latency measurements. Number of transmitted impulses // is kImpulseFrequencyInHz * kMeasureLatencyTimeInSec - 1. static const int kMeasureLatencyTimeInSec = 11; // Utilized in round-trip latency measurements to avoid capturing noise samples. static const int kImpulseThreshold = 500; static const char kTag[] = "[..........] "; enum TransportType { kPlayout = 0x1, kRecording = 0x2, }; // Simple helper struct for device specific audio parameters. struct AudioParameters { int playout_frames_per_buffer() const { return playout_sample_rate / 100; // WebRTC uses 10 ms as buffer size. } int recording_frames_per_buffer() const { return recording_sample_rate / 100; } int playout_sample_rate; int recording_sample_rate; int playout_channels; int recording_channels; }; // Interface for processing the audio stream. Real implementations can e.g. // run audio in loopback, read audio from a file or perform latency // measurements. class AudioStreamInterface { public: virtual void Write(const void* source, int num_frames) = 0; virtual void Read(void* destination, int num_frames) = 0; protected: virtual ~AudioStreamInterface() {} }; // Reads audio samples from a PCM file where the file is stored in memory at // construction. class FileAudioStream : public AudioStreamInterface { public: FileAudioStream( int num_callbacks, const std::string& file_name, int sample_rate) : file_size_in_bytes_(0), sample_rate_(sample_rate), file_pos_(0) { file_size_in_bytes_ = test::GetFileSize(file_name); sample_rate_ = sample_rate; EXPECT_GE(file_size_in_callbacks(), num_callbacks) << "Size of test file is not large enough to last during the test."; const int num_16bit_samples = test::GetFileSize(file_name) / kBytesPerSample; file_.reset(new int16_t[num_16bit_samples]); FILE* audio_file = fopen(file_name.c_str(), "rb"); EXPECT_NE(audio_file, nullptr); int num_samples_read = fread( file_.get(), sizeof(int16_t), num_16bit_samples, audio_file); EXPECT_EQ(num_samples_read, num_16bit_samples); fclose(audio_file); } // AudioStreamInterface::Write() is not implemented. virtual void Write(const void* source, int num_frames) override {} // Read samples from file stored in memory (at construction) and copy // |num_frames| (<=> 10ms) to the |destination| byte buffer. virtual void Read(void* destination, int num_frames) override { memcpy(destination, static_cast (&file_[file_pos_]), num_frames * sizeof(int16_t)); file_pos_ += num_frames; } int file_size_in_seconds() const { return (file_size_in_bytes_ / (kBytesPerSample * sample_rate_)); } int file_size_in_callbacks() const { return file_size_in_seconds() * kNumCallbacksPerSecond; } private: int file_size_in_bytes_; int sample_rate_; rtc::scoped_ptr file_; int file_pos_; }; // Simple first in first out (FIFO) class that wraps a list of 16-bit audio // buffers of fixed size and allows Write and Read operations. The idea is to // store recorded audio buffers (using Write) and then read (using Read) these // stored buffers with as short delay as possible when the audio layer needs // data to play out. The number of buffers in the FIFO will stabilize under // normal conditions since there will be a balance between Write and Read calls. // The container is a std::list container and access is protected with a lock // since both sides (playout and recording) are driven by its own thread. class FifoAudioStream : public AudioStreamInterface { public: explicit FifoAudioStream(int frames_per_buffer) : frames_per_buffer_(frames_per_buffer), bytes_per_buffer_(frames_per_buffer_ * sizeof(int16_t)), fifo_(new AudioBufferList), largest_size_(0), total_written_elements_(0), write_count_(0) { EXPECT_NE(fifo_.get(), nullptr); } ~FifoAudioStream() { Flush(); PRINTD("[%4.3f]\n", average_size()); } // Allocate new memory, copy |num_frames| samples from |source| into memory // and add pointer to the memory location to end of the list. // Increases the size of the FIFO by one element. virtual void Write(const void* source, int num_frames) override { ASSERT_EQ(num_frames, frames_per_buffer_); PRINTD("+"); if (write_count_++ < kNumIgnoreFirstCallbacks) { return; } int16_t* memory = new int16_t[frames_per_buffer_]; memcpy(static_cast (&memory[0]), source, bytes_per_buffer_); rtc::CritScope lock(&lock_); fifo_->push_back(memory); const int size = fifo_->size(); if (size > largest_size_) { largest_size_ = size; PRINTD("(%d)", largest_size_); } total_written_elements_ += size; } // Read pointer to data buffer from front of list, copy |num_frames| of stored // data into |destination| and delete the utilized memory allocation. // Decreases the size of the FIFO by one element. virtual void Read(void* destination, int num_frames) override { ASSERT_EQ(num_frames, frames_per_buffer_); PRINTD("-"); rtc::CritScope lock(&lock_); if (fifo_->empty()) { memset(destination, 0, bytes_per_buffer_); } else { int16_t* memory = fifo_->front(); fifo_->pop_front(); memcpy(destination, static_cast (&memory[0]), bytes_per_buffer_); delete memory; } } int size() const { return fifo_->size(); } int largest_size() const { return largest_size_; } int average_size() const { return (total_written_elements_ == 0) ? 0.0 : 0.5 + static_cast ( total_written_elements_) / (write_count_ - kNumIgnoreFirstCallbacks); } private: void Flush() { for (auto it = fifo_->begin(); it != fifo_->end(); ++it) { delete *it; } fifo_->clear(); } using AudioBufferList = std::list; rtc::CriticalSection lock_; const int frames_per_buffer_; const int bytes_per_buffer_; rtc::scoped_ptr fifo_; int largest_size_; int total_written_elements_; int write_count_; }; // Inserts periodic impulses and measures the latency between the time of // transmission and time of receiving the same impulse. // Usage requires a special hardware called Audio Loopback Dongle. // See http://source.android.com/devices/audio/loopback.html for details. class LatencyMeasuringAudioStream : public AudioStreamInterface { public: explicit LatencyMeasuringAudioStream(int frames_per_buffer) : clock_(Clock::GetRealTimeClock()), frames_per_buffer_(frames_per_buffer), bytes_per_buffer_(frames_per_buffer_ * sizeof(int16_t)), play_count_(0), rec_count_(0), pulse_time_(0) { } // Insert periodic impulses in first two samples of |destination|. virtual void Read(void* destination, int num_frames) override { ASSERT_EQ(num_frames, frames_per_buffer_); if (play_count_ == 0) { PRINT("["); } play_count_++; memset(destination, 0, bytes_per_buffer_); if (play_count_ % (kNumCallbacksPerSecond / kImpulseFrequencyInHz) == 0) { if (pulse_time_ == 0) { pulse_time_ = clock_->TimeInMilliseconds(); } PRINT("."); const int16_t impulse = std::numeric_limits::max(); int16_t* ptr16 = static_cast (destination); for (int i = 0; i < 2; ++i) { *ptr16++ = impulse; } } } // Detect received impulses in |source|, derive time between transmission and // detection and add the calculated delay to list of latencies. virtual void Write(const void* source, int num_frames) override { ASSERT_EQ(num_frames, frames_per_buffer_); rec_count_++; if (pulse_time_ == 0) { // Avoid detection of new impulse response until a new impulse has // been transmitted (sets |pulse_time_| to value larger than zero). return; } const int16_t* ptr16 = static_cast (source); std::vector vec(ptr16, ptr16 + num_frames); // Find max value in the audio buffer. int max = *std::max_element(vec.begin(), vec.end()); // Find index (element position in vector) of the max element. int index_of_max = std::distance(vec.begin(), std::find(vec.begin(), vec.end(), max)); if (max > kImpulseThreshold) { PRINTD("(%d,%d)", max, index_of_max); int64_t now_time = clock_->TimeInMilliseconds(); int extra_delay = IndexToMilliseconds(static_cast (index_of_max)); PRINTD("[%d]", static_cast (now_time - pulse_time_)); PRINTD("[%d]", extra_delay); // Total latency is the difference between transmit time and detection // tome plus the extra delay within the buffer in which we detected the // received impulse. It is transmitted at sample 0 but can be received // at sample N where N > 0. The term |extra_delay| accounts for N and it // is a value between 0 and 10ms. latencies_.push_back(now_time - pulse_time_ + extra_delay); pulse_time_ = 0; } else { PRINTD("-"); } } int num_latency_values() const { return latencies_.size(); } int min_latency() const { if (latencies_.empty()) return 0; return *std::min_element(latencies_.begin(), latencies_.end()); } int max_latency() const { if (latencies_.empty()) return 0; return *std::max_element(latencies_.begin(), latencies_.end()); } int average_latency() const { if (latencies_.empty()) return 0; return 0.5 + static_cast ( std::accumulate(latencies_.begin(), latencies_.end(), 0)) / latencies_.size(); } void PrintResults() const { PRINT("] "); for (auto it = latencies_.begin(); it != latencies_.end(); ++it) { PRINT("%d ", *it); } PRINT("\n"); PRINT("%s[min, max, avg]=[%d, %d, %d] ms\n", kTag, min_latency(), max_latency(), average_latency()); } int IndexToMilliseconds(double index) const { return 10.0 * (index / frames_per_buffer_) + 0.5; } private: Clock* clock_; const int frames_per_buffer_; const int bytes_per_buffer_; int play_count_; int rec_count_; int64_t pulse_time_; std::vector latencies_; }; // Mocks the AudioTransport object and proxies actions for the two callbacks // (RecordedDataIsAvailable and NeedMorePlayData) to different implementations // of AudioStreamInterface. class MockAudioTransport : public AudioTransport { public: explicit MockAudioTransport(int type) : num_callbacks_(0), type_(type), play_count_(0), rec_count_(0), audio_stream_(nullptr) {} virtual ~MockAudioTransport() {} MOCK_METHOD10(RecordedDataIsAvailable, int32_t(const void* audioSamples, const uint32_t nSamples, const uint8_t nBytesPerSample, const uint8_t nChannels, const uint32_t samplesPerSec, const uint32_t totalDelayMS, const int32_t clockDrift, const uint32_t currentMicLevel, const bool keyPressed, uint32_t& newMicLevel)); MOCK_METHOD8(NeedMorePlayData, int32_t(const uint32_t nSamples, const uint8_t nBytesPerSample, const uint8_t nChannels, const uint32_t samplesPerSec, void* audioSamples, uint32_t& nSamplesOut, int64_t* elapsed_time_ms, int64_t* ntp_time_ms)); // Set default actions of the mock object. We are delegating to fake // implementations (of AudioStreamInterface) here. void HandleCallbacks(EventWrapper* test_is_done, AudioStreamInterface* audio_stream, int num_callbacks) { test_is_done_ = test_is_done; audio_stream_ = audio_stream; num_callbacks_ = num_callbacks; if (play_mode()) { ON_CALL(*this, NeedMorePlayData(_, _, _, _, _, _, _, _)) .WillByDefault( Invoke(this, &MockAudioTransport::RealNeedMorePlayData)); } if (rec_mode()) { ON_CALL(*this, RecordedDataIsAvailable(_, _, _, _, _, _, _, _, _, _)) .WillByDefault( Invoke(this, &MockAudioTransport::RealRecordedDataIsAvailable)); } } int32_t RealRecordedDataIsAvailable(const void* audioSamples, const uint32_t nSamples, const uint8_t nBytesPerSample, const uint8_t nChannels, const uint32_t samplesPerSec, const uint32_t totalDelayMS, const int32_t clockDrift, const uint32_t currentMicLevel, const bool keyPressed, uint32_t& newMicLevel) { EXPECT_TRUE(rec_mode()) << "No test is expecting these callbacks."; rec_count_++; // Process the recorded audio stream if an AudioStreamInterface // implementation exists. if (audio_stream_) { audio_stream_->Write(audioSamples, nSamples); } if (ReceivedEnoughCallbacks()) { test_is_done_->Set(); } return 0; } int32_t RealNeedMorePlayData(const uint32_t nSamples, const uint8_t nBytesPerSample, const uint8_t nChannels, const uint32_t samplesPerSec, void* audioSamples, uint32_t& nSamplesOut, int64_t* elapsed_time_ms, int64_t* ntp_time_ms) { EXPECT_TRUE(play_mode()) << "No test is expecting these callbacks."; play_count_++; nSamplesOut = nSamples; // Read (possibly processed) audio stream samples to be played out if an // AudioStreamInterface implementation exists. if (audio_stream_) { audio_stream_->Read(audioSamples, nSamples); } if (ReceivedEnoughCallbacks()) { test_is_done_->Set(); } return 0; } bool ReceivedEnoughCallbacks() { bool recording_done = false; if (rec_mode()) recording_done = rec_count_ >= num_callbacks_; else recording_done = true; bool playout_done = false; if (play_mode()) playout_done = play_count_ >= num_callbacks_; else playout_done = true; return recording_done && playout_done; } bool play_mode() const { return type_ & kPlayout; } bool rec_mode() const { return type_ & kRecording; } private: EventWrapper* test_is_done_; int num_callbacks_; int type_; int play_count_; int rec_count_; AudioStreamInterface* audio_stream_; rtc::scoped_ptr latency_audio_stream_; }; // AudioDeviceTest is a value-parameterized test. class AudioDeviceTest : public testing::TestWithParam { protected: AudioDeviceTest() : test_is_done_(EventWrapper::Create()) { // One-time initialization of JVM and application context. Ensures that we // can do calls between C++ and Java. Initializes both Java and OpenSL ES // implementations. webrtc::audiodevicemodule::EnsureInitialized(); // Creates an audio device based on the test parameter. See // INSTANTIATE_TEST_CASE_P() for details. audio_device_ = CreateAudioDevice(); EXPECT_NE(audio_device_.get(), nullptr); EXPECT_EQ(0, audio_device_->Init()); CacheAudioParameters(); } virtual ~AudioDeviceTest() { EXPECT_EQ(0, audio_device_->Terminate()); } int playout_sample_rate() const { return parameters_.playout_sample_rate; } int recording_sample_rate() const { return parameters_.recording_sample_rate; } int playout_channels() const { return parameters_.playout_channels; } int recording_channels() const { return parameters_.playout_channels; } int playout_frames_per_buffer() const { return parameters_.playout_frames_per_buffer(); } int recording_frames_per_buffer() const { return parameters_.recording_frames_per_buffer(); } scoped_refptr audio_device() const { return audio_device_; } scoped_refptr CreateAudioDevice() { scoped_refptr module( AudioDeviceModuleImpl::Create(0, GetParam())); return module; } void CacheAudioParameters() { AudioDeviceBuffer* audio_buffer = static_cast ( audio_device_.get())->GetAudioDeviceBuffer(); parameters_.playout_sample_rate = audio_buffer->PlayoutSampleRate(); parameters_.recording_sample_rate = audio_buffer->RecordingSampleRate(); parameters_.playout_channels = audio_buffer->PlayoutChannels(); parameters_.recording_channels = audio_buffer->RecordingChannels(); } // Returns file name relative to the resource root given a sample rate. std::string GetFileName(int sample_rate) { EXPECT_TRUE(sample_rate == 48000 || sample_rate == 44100); char fname[64]; snprintf(fname, sizeof(fname), "audio_device/audio_short%d", sample_rate / 1000); std::string file_name(webrtc::test::ResourcePath(fname, "pcm")); EXPECT_TRUE(test::FileExists(file_name)); #ifdef ENABLE_PRINTF PRINT("file name: %s\n", file_name.c_str()); const int bytes = test::GetFileSize(file_name); PRINT("file size: %d [bytes]\n", bytes); PRINT("file size: %d [samples]\n", bytes / kBytesPerSample); const int seconds = bytes / (sample_rate * kBytesPerSample); PRINT("file size: %d [secs]\n", seconds); PRINT("file size: %d [callbacks]\n", seconds * kNumCallbacksPerSecond); #endif return file_name; } void StartPlayout() { EXPECT_FALSE(audio_device()->PlayoutIsInitialized()); EXPECT_FALSE(audio_device()->Playing()); EXPECT_EQ(0, audio_device()->InitPlayout()); EXPECT_TRUE(audio_device()->PlayoutIsInitialized()); EXPECT_EQ(0, audio_device()->StartPlayout()); EXPECT_TRUE(audio_device()->Playing()); } void StopPlayout() { EXPECT_EQ(0, audio_device()->StopPlayout()); EXPECT_FALSE(audio_device()->Playing()); } void StartRecording() { EXPECT_FALSE(audio_device()->RecordingIsInitialized()); EXPECT_FALSE(audio_device()->Recording()); EXPECT_EQ(0, audio_device()->InitRecording()); EXPECT_TRUE(audio_device()->RecordingIsInitialized()); EXPECT_EQ(0, audio_device()->StartRecording()); EXPECT_TRUE(audio_device()->Recording()); } void StopRecording() { EXPECT_EQ(0, audio_device()->StopRecording()); EXPECT_FALSE(audio_device()->Recording()); } rtc::scoped_ptr test_is_done_; scoped_refptr audio_device_; AudioParameters parameters_; }; TEST_P(AudioDeviceTest, ConstructDestruct) { // Using the test fixture to create and destruct the audio device module. } // Create an audio device instance and print out the native audio parameters. TEST_P(AudioDeviceTest, AudioParameters) { EXPECT_NE(0, playout_sample_rate()); PRINT("%splayout_sample_rate: %d\n", kTag, playout_sample_rate()); EXPECT_NE(0, recording_sample_rate()); PRINT("%splayout_sample_rate: %d\n", kTag, recording_sample_rate()); EXPECT_NE(0, playout_channels()); PRINT("%splayout_channels: %d\n", kTag, playout_channels()); EXPECT_NE(0, recording_channels()); PRINT("%srecording_channels: %d\n", kTag, recording_channels()); } TEST_P(AudioDeviceTest, InitTerminate) { // Initialization is part of the test fixture. EXPECT_TRUE(audio_device()->Initialized()); EXPECT_EQ(0, audio_device()->Terminate()); EXPECT_FALSE(audio_device()->Initialized()); } TEST_P(AudioDeviceTest, Devices) { // Device enumeration is not supported. Verify fixed values only. EXPECT_EQ(1, audio_device()->PlayoutDevices()); EXPECT_EQ(1, audio_device()->RecordingDevices()); } TEST_P(AudioDeviceTest, BuiltInAECIsAvailable) { PRINT("%sBuiltInAECIsAvailable: %s\n", kTag, audio_device()->BuiltInAECIsAvailable() ? "true" : "false"); } // Tests that playout can be initiated, started and stopped. TEST_P(AudioDeviceTest, StartStopPlayout) { StartPlayout(); StopPlayout(); } // Start playout and verify that the native audio layer starts asking for real // audio samples to play out using the NeedMorePlayData callback. TEST_P(AudioDeviceTest, StartPlayoutVerifyCallbacks) { MockAudioTransport mock(kPlayout); mock.HandleCallbacks(test_is_done_.get(), nullptr, kNumCallbacks); EXPECT_CALL(mock, NeedMorePlayData(playout_frames_per_buffer(), kBytesPerSample, playout_channels(), playout_sample_rate(), NotNull(), _, _, _)) .Times(AtLeast(kNumCallbacks)); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); StartPlayout(); test_is_done_->Wait(kTestTimeOutInMilliseconds); StopPlayout(); } // Start recording and verify that the native audio layer starts feeding real // audio samples via the RecordedDataIsAvailable callback. TEST_P(AudioDeviceTest, StartRecordingVerifyCallbacks) { MockAudioTransport mock(kRecording); mock.HandleCallbacks(test_is_done_.get(), nullptr, kNumCallbacks); EXPECT_CALL(mock, RecordedDataIsAvailable(NotNull(), recording_frames_per_buffer(), kBytesPerSample, recording_channels(), recording_sample_rate(), kFixedRecordingDelay, 0, 0, false, _)) .Times(AtLeast(kNumCallbacks)); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); StartRecording(); test_is_done_->Wait(kTestTimeOutInMilliseconds); StopRecording(); } // Start playout and recording (full-duplex audio) and verify that audio is // active in both directions. TEST_P(AudioDeviceTest, StartPlayoutAndRecordingVerifyCallbacks) { MockAudioTransport mock(kPlayout | kRecording); mock.HandleCallbacks(test_is_done_.get(), nullptr, kNumCallbacks); EXPECT_CALL(mock, NeedMorePlayData(playout_frames_per_buffer(), kBytesPerSample, playout_channels(), playout_sample_rate(), NotNull(), _, _, _)) .Times(AtLeast(kNumCallbacks)); EXPECT_CALL(mock, RecordedDataIsAvailable(NotNull(), recording_frames_per_buffer(), kBytesPerSample, recording_channels(), recording_sample_rate(), Gt(kFixedRecordingDelay), 0, 0, false, _)) .Times(AtLeast(kNumCallbacks)); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); StartPlayout(); StartRecording(); test_is_done_->Wait(kTestTimeOutInMilliseconds); StopRecording(); StopPlayout(); } // Start playout and read audio from an external PCM file when the audio layer // asks for data to play out. Real audio is played out in this test but it does // not contain any explicit verification that the audio quality is perfect. TEST_P(AudioDeviceTest, RunPlayoutWithFileAsSource) { // TODO(henrika): extend test when mono output is supported. EXPECT_EQ(1, playout_channels()); NiceMock mock(kPlayout); const int num_callbacks = kFilePlayTimeInSec * kNumCallbacksPerSecond; std::string file_name = GetFileName(playout_sample_rate()); rtc::scoped_ptr file_audio_stream( new FileAudioStream(num_callbacks, file_name, playout_sample_rate())); mock.HandleCallbacks(test_is_done_.get(), file_audio_stream.get(), num_callbacks); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); StartPlayout(); test_is_done_->Wait(kTestTimeOutInMilliseconds); StopPlayout(); } // Start playout and recording and store recorded data in an intermediate FIFO // buffer from which the playout side then reads its samples in the same order // as they were stored. Under ideal circumstances, a callback sequence would // look like: ...+-+-+-+-+-+-+-..., where '+' means 'packet recorded' and '-' // means 'packet played'. Under such conditions, the FIFO would only contain // one packet on average. However, under more realistic conditions, the size // of the FIFO will vary more due to an unbalance between the two sides. // This test tries to verify that the device maintains a balanced callback- // sequence by running in loopback for ten seconds while measuring the size // (max and average) of the FIFO. The size of the FIFO is increased by the // recording side and decreased by the playout side. // TODO(henrika): tune the final test parameters after running tests on several // different devices. TEST_P(AudioDeviceTest, RunPlayoutAndRecordingInFullDuplex) { EXPECT_EQ(recording_channels(), playout_channels()); EXPECT_EQ(recording_sample_rate(), playout_sample_rate()); NiceMock mock(kPlayout | kRecording); rtc::scoped_ptr fifo_audio_stream( new FifoAudioStream(playout_frames_per_buffer())); mock.HandleCallbacks(test_is_done_.get(), fifo_audio_stream.get(), kFullDuplexTimeInSec * kNumCallbacksPerSecond); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); StartRecording(); StartPlayout(); test_is_done_->Wait(std::max(kTestTimeOutInMilliseconds, 1000 * kFullDuplexTimeInSec)); StopPlayout(); StopRecording(); EXPECT_LE(fifo_audio_stream->average_size(), 10); EXPECT_LE(fifo_audio_stream->largest_size(), 20); } // Measures loopback latency and reports the min, max and average values for // a full duplex audio session. // The latency is measured like so: // - Insert impulses periodically on the output side. // - Detect the impulses on the input side. // - Measure the time difference between the transmit time and receive time. // - Store time differences in a vector and calculate min, max and average. // This test requires a special hardware called Audio Loopback Dongle. // See http://source.android.com/devices/audio/loopback.html for details. TEST_P(AudioDeviceTest, DISABLED_MeasureLoopbackLatency) { EXPECT_EQ(recording_channels(), playout_channels()); EXPECT_EQ(recording_sample_rate(), playout_sample_rate()); NiceMock mock(kPlayout | kRecording); rtc::scoped_ptr latency_audio_stream( new LatencyMeasuringAudioStream(playout_frames_per_buffer())); mock.HandleCallbacks(test_is_done_.get(), latency_audio_stream.get(), kMeasureLatencyTimeInSec * kNumCallbacksPerSecond); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); StartRecording(); StartPlayout(); test_is_done_->Wait(std::max(kTestTimeOutInMilliseconds, 1000 * kMeasureLatencyTimeInSec)); StopPlayout(); StopRecording(); // Verify that the correct number of transmitted impulses are detected. EXPECT_EQ(latency_audio_stream->num_latency_values(), kImpulseFrequencyInHz * kMeasureLatencyTimeInSec - 1); latency_audio_stream->PrintResults(); } INSTANTIATE_TEST_CASE_P(AudioDeviceTest, AudioDeviceTest, ::testing::ValuesIn(kAudioLayers)); } // namespace webrtc