/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/agc2/noise_level_estimator.h" #include #include #include #include #include "api/array_view.h" #include "common_audio/include/audio_util.h" #include "modules/audio_processing/agc2/signal_classifier.h" #include "modules/audio_processing/logging/apm_data_dumper.h" #include "rtc_base/checks.h" namespace webrtc { namespace { constexpr int kFramesPerSecond = 100; float FrameEnergy(const AudioFrameView& audio) { float energy = 0.0f; for (size_t k = 0; k < audio.num_channels(); ++k) { float channel_energy = std::accumulate(audio.channel(k).begin(), audio.channel(k).end(), 0.0f, [](float a, float b) -> float { return a + b * b; }); energy = std::max(channel_energy, energy); } return energy; } float EnergyToDbfs(float signal_energy, size_t num_samples) { const float rms = std::sqrt(signal_energy / num_samples); return FloatS16ToDbfs(rms); } class NoiseLevelEstimatorImpl : public NoiseLevelEstimator { public: NoiseLevelEstimatorImpl(ApmDataDumper* data_dumper) : data_dumper_(data_dumper), signal_classifier_(data_dumper) { // Initially assume that 48 kHz will be used. `Analyze()` will detect the // used sample rate and call `Initialize()` again if needed. Initialize(/*sample_rate_hz=*/48000); } NoiseLevelEstimatorImpl(const NoiseLevelEstimatorImpl&) = delete; NoiseLevelEstimatorImpl& operator=(const NoiseLevelEstimatorImpl&) = delete; ~NoiseLevelEstimatorImpl() = default; float Analyze(const AudioFrameView& frame) override { data_dumper_->DumpRaw("agc2_noise_level_estimator_hold_counter", noise_energy_hold_counter_); const int sample_rate_hz = static_cast(frame.samples_per_channel() * kFramesPerSecond); if (sample_rate_hz != sample_rate_hz_) { Initialize(sample_rate_hz); } const float frame_energy = FrameEnergy(frame); if (frame_energy <= 0.f) { RTC_DCHECK_GE(frame_energy, 0.f); data_dumper_->DumpRaw("agc2_noise_level_estimator_signal_type", -1); return EnergyToDbfs(noise_energy_, frame.samples_per_channel()); } if (first_update_) { // Initialize the noise energy to the frame energy. first_update_ = false; data_dumper_->DumpRaw("agc2_noise_level_estimator_signal_type", -1); noise_energy_ = std::max(frame_energy, min_noise_energy_); return EnergyToDbfs(noise_energy_, frame.samples_per_channel()); } const SignalClassifier::SignalType signal_type = signal_classifier_.Analyze(frame.channel(0)); data_dumper_->DumpRaw("agc2_noise_level_estimator_signal_type", static_cast(signal_type)); // Update the noise estimate in a minimum statistics-type manner. if (signal_type == SignalClassifier::SignalType::kStationary) { if (frame_energy > noise_energy_) { // Leak the estimate upwards towards the frame energy if no recent // downward update. noise_energy_hold_counter_ = std::max(noise_energy_hold_counter_ - 1, 0); if (noise_energy_hold_counter_ == 0) { constexpr float kMaxNoiseEnergyFactor = 1.01f; noise_energy_ = std::min(noise_energy_ * kMaxNoiseEnergyFactor, frame_energy); } } else { // Update smoothly downwards with a limited maximum update magnitude. constexpr float kMinNoiseEnergyFactor = 0.9f; constexpr float kNoiseEnergyDeltaFactor = 0.05f; noise_energy_ = std::max(noise_energy_ * kMinNoiseEnergyFactor, noise_energy_ - kNoiseEnergyDeltaFactor * (noise_energy_ - frame_energy)); // Prevent an energy increase for the next 10 seconds. constexpr int kNumFramesToEnergyIncreaseAllowed = 1000; noise_energy_hold_counter_ = kNumFramesToEnergyIncreaseAllowed; } } else { // TODO(bugs.webrtc.org/7494): Remove to not forget the estimated level. // For a non-stationary signal, leak the estimate downwards in order to // avoid estimate locking due to incorrect signal classification. noise_energy_ = noise_energy_ * 0.99f; } // Ensure a minimum of the estimate. noise_energy_ = std::max(noise_energy_, min_noise_energy_); return EnergyToDbfs(noise_energy_, frame.samples_per_channel()); } private: void Initialize(int sample_rate_hz) { sample_rate_hz_ = sample_rate_hz; noise_energy_ = 1.0f; first_update_ = true; // Initialize the minimum noise energy to -84 dBFS. min_noise_energy_ = sample_rate_hz * 2.0f * 2.0f / kFramesPerSecond; noise_energy_hold_counter_ = 0; signal_classifier_.Initialize(sample_rate_hz); } ApmDataDumper* const data_dumper_; int sample_rate_hz_; float min_noise_energy_; bool first_update_; float noise_energy_; int noise_energy_hold_counter_; SignalClassifier signal_classifier_; }; // Updates the noise floor with instant decay and slow attack. This tuning is // specific for AGC2, so that (i) it can promptly increase the gain if the noise // floor drops (instant decay) and (ii) in case of music or fast speech, due to // which the noise floor can be overestimated, the gain reduction is slowed // down. float SmoothNoiseFloorEstimate(float current_estimate, float new_estimate) { constexpr float kAttack = 0.5f; if (current_estimate < new_estimate) { // Attack phase. return kAttack * new_estimate + (1.0f - kAttack) * current_estimate; } // Instant attack. return new_estimate; } class NoiseFloorEstimator : public NoiseLevelEstimator { public: // Update the noise floor every 5 seconds. static constexpr int kUpdatePeriodNumFrames = 500; static_assert(kUpdatePeriodNumFrames >= 200, "A too small value may cause noise level overestimation."); static_assert(kUpdatePeriodNumFrames <= 1500, "A too large value may make AGC2 slow at reacting to increased " "noise levels."); NoiseFloorEstimator(ApmDataDumper* data_dumper) : data_dumper_(data_dumper) { // Initially assume that 48 kHz will be used. `Analyze()` will detect the // used sample rate and call `Initialize()` again if needed. Initialize(/*sample_rate_hz=*/48000); } NoiseFloorEstimator(const NoiseFloorEstimator&) = delete; NoiseFloorEstimator& operator=(const NoiseFloorEstimator&) = delete; ~NoiseFloorEstimator() = default; float Analyze(const AudioFrameView& frame) override { // Detect sample rate changes. const int sample_rate_hz = static_cast(frame.samples_per_channel() * kFramesPerSecond); if (sample_rate_hz != sample_rate_hz_) { Initialize(sample_rate_hz); } const float frame_energy = FrameEnergy(frame); if (frame_energy <= min_noise_energy_) { // Ignore frames when muted or below the minimum measurable energy. data_dumper_->DumpRaw("agc2_noise_floor_estimator_preliminary_level", noise_energy_); return EnergyToDbfs(noise_energy_, frame.samples_per_channel()); } if (preliminary_noise_energy_set_) { preliminary_noise_energy_ = std::min(preliminary_noise_energy_, frame_energy); } else { preliminary_noise_energy_ = frame_energy; preliminary_noise_energy_set_ = true; } data_dumper_->DumpRaw("agc2_noise_floor_estimator_preliminary_level", preliminary_noise_energy_); if (counter_ == 0) { // Full period observed. first_period_ = false; // Update the estimated noise floor energy with the preliminary // estimation. noise_energy_ = SmoothNoiseFloorEstimate( /*current_estimate=*/noise_energy_, /*new_estimate=*/preliminary_noise_energy_); // Reset for a new observation period. counter_ = kUpdatePeriodNumFrames; preliminary_noise_energy_set_ = false; } else if (first_period_) { // While analyzing the signal during the initial period, continuously // update the estimated noise energy, which is monotonic. noise_energy_ = preliminary_noise_energy_; counter_--; } else { // During the observation period it's only allowed to lower the energy. noise_energy_ = std::min(noise_energy_, preliminary_noise_energy_); counter_--; } return EnergyToDbfs(noise_energy_, frame.samples_per_channel()); } private: void Initialize(int sample_rate_hz) { sample_rate_hz_ = sample_rate_hz; first_period_ = true; preliminary_noise_energy_set_ = false; // Initialize the minimum noise energy to -84 dBFS. min_noise_energy_ = sample_rate_hz * 2.0f * 2.0f / kFramesPerSecond; preliminary_noise_energy_ = min_noise_energy_; noise_energy_ = min_noise_energy_; counter_ = kUpdatePeriodNumFrames; } ApmDataDumper* const data_dumper_; int sample_rate_hz_; float min_noise_energy_; bool first_period_; bool preliminary_noise_energy_set_; float preliminary_noise_energy_; float noise_energy_; int counter_; }; } // namespace std::unique_ptr CreateStationaryNoiseEstimator( ApmDataDumper* data_dumper) { return std::make_unique(data_dumper); } std::unique_ptr CreateNoiseFloorEstimator( ApmDataDumper* data_dumper) { return std::make_unique(data_dumper); } } // namespace webrtc