/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/modules/pacing/include/paced_sender.h" using testing::_; using testing::Return; namespace webrtc { namespace test { static const int kTargetBitrate = 800; static const float kPaceMultiplier = 1.5f; class MockPacedSenderCallback : public PacedSender::Callback { public: MOCK_METHOD4(TimeToSendPacket, bool(uint32_t ssrc, uint16_t sequence_number, int64_t capture_time_ms, bool retransmission)); MOCK_METHOD1(TimeToSendPadding, int(int bytes)); }; class PacedSenderPadding : public PacedSender::Callback { public: PacedSenderPadding() : padding_sent_(0) {} bool TimeToSendPacket(uint32_t ssrc, uint16_t sequence_number, int64_t capture_time_ms, bool retransmission) { return true; } int TimeToSendPadding(int bytes) { const int kPaddingPacketSize = 224; int num_packets = (bytes + kPaddingPacketSize - 1) / kPaddingPacketSize; padding_sent_ += kPaddingPacketSize * num_packets; return kPaddingPacketSize * num_packets; } int padding_sent() { return padding_sent_; } private: int padding_sent_; }; class PacedSenderTest : public ::testing::Test { protected: PacedSenderTest() { srand(0); TickTime::UseFakeClock(123456); // Need to initialize PacedSender after we initialize clock. send_bucket_.reset( new PacedSender(&callback_, kPaceMultiplier * kTargetBitrate, 0)); send_bucket_->SetStatus(true); } void SendAndExpectPacket(PacedSender::Priority priority, uint32_t ssrc, uint16_t sequence_number, int64_t capture_time_ms, int size, bool retransmission) { EXPECT_FALSE(send_bucket_->SendPacket(priority, ssrc, sequence_number, capture_time_ms, size, retransmission)); EXPECT_CALL(callback_, TimeToSendPacket( ssrc, sequence_number, capture_time_ms, false)) .Times(1) .WillRepeatedly(Return(true)); } MockPacedSenderCallback callback_; scoped_ptr send_bucket_; }; TEST_F(PacedSenderTest, QueuePacket) { uint32_t ssrc = 12345; uint16_t sequence_number = 1234; // Due to the multiplicative factor we can send 3 packets not 2 packets. SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false); int64_t queued_packet_timestamp = TickTime::MillisecondTimestamp(); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number, queued_packet_timestamp, 250, false)); send_bucket_->Process(); EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0); TickTime::AdvanceFakeClock(4); EXPECT_EQ(1, send_bucket_->TimeUntilNextProcess()); TickTime::AdvanceFakeClock(1); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_CALL(callback_, TimeToSendPacket( ssrc, sequence_number++, queued_packet_timestamp, false)) .Times(1) .WillRepeatedly(Return(true)); send_bucket_->Process(); sequence_number++; SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false)); send_bucket_->Process(); } TEST_F(PacedSenderTest, PaceQueuedPackets) { uint32_t ssrc = 12345; uint16_t sequence_number = 1234; // Due to the multiplicative factor we can send 3 packets not 2 packets. for (int i = 0; i < 3; ++i) { SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false); } for (int j = 0; j < 30; ++j) { EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false)); } send_bucket_->Process(); EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0); for (int k = 0; k < 10; ++k) { EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); TickTime::AdvanceFakeClock(5); EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, _, false)) .Times(3) .WillRepeatedly(Return(true)); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); } EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); TickTime::AdvanceFakeClock(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number, TickTime::MillisecondTimestamp(), 250, false)); send_bucket_->Process(); } TEST_F(PacedSenderTest, PaceQueuedPacketsWithDuplicates) { uint32_t ssrc = 12345; uint16_t sequence_number = 1234; uint16_t queued_sequence_number; // Due to the multiplicative factor we can send 3 packets not 2 packets. for (int i = 0; i < 3; ++i) { SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false); } queued_sequence_number = sequence_number; for (int j = 0; j < 30; ++j) { // Send in duplicate packets. EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number, TickTime::MillisecondTimestamp(), 250, false)); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false)); } EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0); send_bucket_->Process(); for (int k = 0; k < 10; ++k) { EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); TickTime::AdvanceFakeClock(5); for (int i = 0; i < 3; ++i) { EXPECT_CALL(callback_, TimeToSendPacket(ssrc, queued_sequence_number++, _, false)) .Times(1) .WillRepeatedly(Return(true)); } EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); } EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); TickTime::AdvanceFakeClock(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false)); send_bucket_->Process(); } TEST_F(PacedSenderTest, Padding) { uint32_t ssrc = 12345; uint16_t sequence_number = 1234; send_bucket_->UpdateBitrate(kPaceMultiplier * kTargetBitrate, kTargetBitrate); // Due to the multiplicative factor we can send 3 packets not 2 packets. SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 250, false); // No padding is expected since we have sent too much already. EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0); EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); TickTime::AdvanceFakeClock(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); // 5 milliseconds later we have enough budget to send some padding. EXPECT_CALL(callback_, TimeToSendPadding(250)).Times(1). WillOnce(Return(250)); EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); TickTime::AdvanceFakeClock(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); } TEST_F(PacedSenderTest, NoPaddingWhenDisabled) { send_bucket_->SetStatus(false); send_bucket_->UpdateBitrate(kPaceMultiplier * kTargetBitrate, kTargetBitrate); // No padding is expected since the pacer is disabled. EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0); EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); TickTime::AdvanceFakeClock(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0); EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); TickTime::AdvanceFakeClock(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); } TEST_F(PacedSenderTest, VerifyPaddingUpToBitrate) { uint32_t ssrc = 12345; uint16_t sequence_number = 1234; int64_t capture_time_ms = 56789; const int kTimeStep = 5; const int64_t kBitrateWindow = 100; send_bucket_->UpdateBitrate(kPaceMultiplier * kTargetBitrate, kTargetBitrate); int64_t start_time = TickTime::MillisecondTimestamp(); while (TickTime::MillisecondTimestamp() - start_time < kBitrateWindow) { SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, 250, false); TickTime::AdvanceFakeClock(kTimeStep); EXPECT_CALL(callback_, TimeToSendPadding(250)).Times(1). WillOnce(Return(250)); send_bucket_->Process(); } } TEST_F(PacedSenderTest, VerifyAverageBitrateVaryingMediaPayload) { uint32_t ssrc = 12345; uint16_t sequence_number = 1234; int64_t capture_time_ms = 56789; const int kTimeStep = 5; const int64_t kBitrateWindow = 10000; PacedSenderPadding callback; send_bucket_.reset( new PacedSender(&callback, kPaceMultiplier * kTargetBitrate, 0)); send_bucket_->SetStatus(true); send_bucket_->UpdateBitrate(kPaceMultiplier * kTargetBitrate, kTargetBitrate); int64_t start_time = TickTime::MillisecondTimestamp(); int media_bytes = 0; while (TickTime::MillisecondTimestamp() - start_time < kBitrateWindow) { int media_payload = rand() % 100 + 200; // [200, 300] bytes. EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, media_payload, false)); media_bytes += media_payload; TickTime::AdvanceFakeClock(kTimeStep); send_bucket_->Process(); } EXPECT_NEAR(kTargetBitrate, 8 * (media_bytes + callback.padding_sent()) / kBitrateWindow, 1); } TEST_F(PacedSenderTest, Priority) { uint32_t ssrc_low_priority = 12345; uint32_t ssrc = 12346; uint16_t sequence_number = 1234; int64_t capture_time_ms = 56789; int64_t capture_time_ms_low_priority = 1234567; // Due to the multiplicative factor we can send 3 packets not 2 packets. SendAndExpectPacket(PacedSender::kLowPriority, ssrc, sequence_number++, capture_time_ms, 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, 250, false); send_bucket_->Process(); // Expect normal and low priority to be queued and high to pass through. EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kLowPriority, ssrc_low_priority, sequence_number++, capture_time_ms_low_priority, 250, false)); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, 250, false)); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, 250, false)); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kHighPriority, ssrc, sequence_number++, capture_time_ms, 250, false)); // Expect all high and normal priority to be sent out first. EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0); EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, capture_time_ms, false)) .Times(3) .WillRepeatedly(Return(true)); EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); TickTime::AdvanceFakeClock(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); EXPECT_CALL(callback_, TimeToSendPacket( ssrc_low_priority, _, capture_time_ms_low_priority, false)) .Times(1) .WillRepeatedly(Return(true)); EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); TickTime::AdvanceFakeClock(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); } TEST_F(PacedSenderTest, Pause) { uint32_t ssrc_low_priority = 12345; uint32_t ssrc = 12346; uint16_t sequence_number = 1234; int64_t capture_time_ms = TickTime::MillisecondTimestamp(); EXPECT_EQ(0, send_bucket_->QueueInMs()); // Due to the multiplicative factor we can send 3 packets not 2 packets. SendAndExpectPacket(PacedSender::kLowPriority, ssrc, sequence_number++, capture_time_ms, 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, 250, false); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, 250, false); send_bucket_->Process(); send_bucket_->Pause(); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, 250, false)); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, capture_time_ms, 250, false)); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kHighPriority, ssrc, sequence_number++, capture_time_ms, 250, false)); TickTime::AdvanceFakeClock(10000); int64_t second_capture_time_ms = TickTime::MillisecondTimestamp(); // Expect everything to be queued. EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kLowPriority, ssrc_low_priority, sequence_number++, second_capture_time_ms, 250, false)); EXPECT_EQ(TickTime::MillisecondTimestamp() - capture_time_ms, send_bucket_->QueueInMs()); // Expect no packet to come out while paused. EXPECT_CALL(callback_, TimeToSendPadding(_)).Times(0); EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, _)).Times(0); for (int i = 0; i < 10; ++i) { TickTime::AdvanceFakeClock(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); } // Expect high prio packets to come out first followed by all packets in the // way they were added. EXPECT_CALL(callback_, TimeToSendPacket(_, _, capture_time_ms, false)) .Times(3) .WillRepeatedly(Return(true)); send_bucket_->Resume(); EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); TickTime::AdvanceFakeClock(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); EXPECT_CALL( callback_, TimeToSendPacket(_, _, second_capture_time_ms, false)) .Times(1) .WillRepeatedly(Return(true)); EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); TickTime::AdvanceFakeClock(5); EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); EXPECT_EQ(0, send_bucket_->Process()); EXPECT_EQ(0, send_bucket_->QueueInMs()); } TEST_F(PacedSenderTest, ResendPacket) { uint32_t ssrc = 12346; uint16_t sequence_number = 1234; int64_t capture_time_ms = TickTime::MillisecondTimestamp(); EXPECT_EQ(0, send_bucket_->QueueInMs()); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number, capture_time_ms, 250, false)); TickTime::AdvanceFakeClock(1); EXPECT_FALSE(send_bucket_->SendPacket(PacedSender::kNormalPriority, ssrc, sequence_number + 1, capture_time_ms + 1, 250, false)); TickTime::AdvanceFakeClock(9999); EXPECT_EQ(TickTime::MillisecondTimestamp() - capture_time_ms, send_bucket_->QueueInMs()); // Fails to send first packet so only one call. EXPECT_CALL(callback_, TimeToSendPacket( ssrc, sequence_number, capture_time_ms, false)) .Times(1) .WillOnce(Return(false)); TickTime::AdvanceFakeClock(10000); send_bucket_->Process(); // Queue remains unchanged. EXPECT_EQ(TickTime::MillisecondTimestamp() - capture_time_ms, send_bucket_->QueueInMs()); // Fails to send second packet. EXPECT_CALL(callback_, TimeToSendPacket( ssrc, sequence_number, capture_time_ms, false)) .Times(1) .WillOnce(Return(true)); EXPECT_CALL(callback_, TimeToSendPacket( ssrc, sequence_number + 1, capture_time_ms + 1, false)) .Times(1) .WillOnce(Return(false)); TickTime::AdvanceFakeClock(10000); send_bucket_->Process(); // Queue is reduced by 1 packet. EXPECT_EQ(TickTime::MillisecondTimestamp() - capture_time_ms - 1, send_bucket_->QueueInMs()); // Send second packet and queue becomes empty. EXPECT_CALL(callback_, TimeToSendPacket( ssrc, sequence_number + 1, capture_time_ms + 1, false)) .Times(1) .WillOnce(Return(true)); TickTime::AdvanceFakeClock(10000); send_bucket_->Process(); EXPECT_EQ(0, send_bucket_->QueueInMs()); } TEST_F(PacedSenderTest, MaxQueueLength) { uint32_t ssrc = 12346; uint16_t sequence_number = 1234; EXPECT_EQ(0, send_bucket_->QueueInMs()); send_bucket_->UpdateBitrate(kPaceMultiplier * 30, 0); for (int i = 0; i < 30; ++i) { SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 1200, false); } TickTime::AdvanceFakeClock(2001); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, TickTime::MillisecondTimestamp(), 1200, false); EXPECT_EQ(2001, send_bucket_->QueueInMs()); send_bucket_->Process(); EXPECT_EQ(0, send_bucket_->QueueInMs()); TickTime::AdvanceFakeClock(31); send_bucket_->Process(); } TEST_F(PacedSenderTest, QueueTimeGrowsOverTime) { uint32_t ssrc = 12346; uint16_t sequence_number = 1234; EXPECT_EQ(0, send_bucket_->QueueInMs()); send_bucket_->UpdateBitrate(kPaceMultiplier * 30, 0); SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number, TickTime::MillisecondTimestamp(), 1200, false); TickTime::AdvanceFakeClock(500); EXPECT_EQ(500, send_bucket_->QueueInMs()); send_bucket_->Process(); EXPECT_EQ(0, send_bucket_->QueueInMs()); } } // namespace test } // namespace webrtc