/* * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "call/rtp_video_sender.h" #include #include #include #include #include "absl/algorithm/container.h" #include "absl/memory/memory.h" #include "api/array_view.h" #include "api/transport/field_trial_based_config.h" #include "call/rtp_transport_controller_send_interface.h" #include "modules/pacing/packet_router.h" #include "modules/rtp_rtcp/include/rtp_rtcp.h" #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "modules/rtp_rtcp/source/playout_delay_oracle.h" #include "modules/rtp_rtcp/source/rtp_sender.h" #include "modules/utility/include/process_thread.h" #include "modules/video_coding/include/video_codec_interface.h" #include "rtc_base/checks.h" #include "rtc_base/location.h" #include "rtc_base/logging.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace webrtc_internal_rtp_video_sender { RtpStreamSender::RtpStreamSender( std::unique_ptr playout_delay_oracle, std::unique_ptr rtp_rtcp, std::unique_ptr sender_video) : playout_delay_oracle(std::move(playout_delay_oracle)), rtp_rtcp(std::move(rtp_rtcp)), sender_video(std::move(sender_video)) {} RtpStreamSender::~RtpStreamSender() = default; } // namespace webrtc_internal_rtp_video_sender namespace { static const int kMinSendSidePacketHistorySize = 600; // We don't do MTU discovery, so assume that we have the standard ethernet MTU. static const size_t kPathMTU = 1500; using webrtc_internal_rtp_video_sender::RtpStreamSender; std::vector CreateRtpStreamSenders( Clock* clock, const RtpConfig& rtp_config, int rtcp_report_interval_ms, Transport* send_transport, RtcpIntraFrameObserver* intra_frame_callback, RtcpLossNotificationObserver* rtcp_loss_notification_observer, RtcpBandwidthObserver* bandwidth_callback, RtpTransportControllerSendInterface* transport, RtcpRttStats* rtt_stats, FlexfecSender* flexfec_sender, BitrateStatisticsObserver* bitrate_observer, RtcpPacketTypeCounterObserver* rtcp_type_observer, SendSideDelayObserver* send_delay_observer, SendPacketObserver* send_packet_observer, RtcEventLog* event_log, RateLimiter* retransmission_rate_limiter, OverheadObserver* overhead_observer, FrameEncryptorInterface* frame_encryptor, const CryptoOptions& crypto_options) { RTC_DCHECK_GT(rtp_config.ssrcs.size(), 0); RtpRtcp::Configuration configuration; configuration.clock = clock; configuration.audio = false; configuration.receiver_only = false; configuration.outgoing_transport = send_transport; configuration.intra_frame_callback = intra_frame_callback; configuration.rtcp_loss_notification_observer = rtcp_loss_notification_observer; configuration.bandwidth_callback = bandwidth_callback; configuration.transport_feedback_callback = transport->transport_feedback_observer(); configuration.rtt_stats = rtt_stats; configuration.rtcp_packet_type_counter_observer = rtcp_type_observer; configuration.paced_sender = transport->packet_sender(); configuration.transport_sequence_number_allocator = transport->packet_router(); configuration.send_bitrate_observer = bitrate_observer; configuration.send_side_delay_observer = send_delay_observer; configuration.send_packet_observer = send_packet_observer; configuration.event_log = event_log; configuration.retransmission_rate_limiter = retransmission_rate_limiter; configuration.overhead_observer = overhead_observer; configuration.frame_encryptor = frame_encryptor; configuration.require_frame_encryption = crypto_options.sframe.require_frame_encryption; configuration.extmap_allow_mixed = rtp_config.extmap_allow_mixed; configuration.rtcp_report_interval_ms = rtcp_report_interval_ms; std::vector rtp_streams; const std::vector& flexfec_protected_ssrcs = rtp_config.flexfec.protected_media_ssrcs; for (uint32_t ssrc : rtp_config.ssrcs) { bool enable_flexfec = flexfec_sender != nullptr && std::find(flexfec_protected_ssrcs.begin(), flexfec_protected_ssrcs.end(), ssrc) != flexfec_protected_ssrcs.end(); configuration.flexfec_sender = enable_flexfec ? flexfec_sender : nullptr; auto playout_delay_oracle = absl::make_unique(); configuration.ack_observer = playout_delay_oracle.get(); auto rtp_rtcp = RtpRtcp::Create(configuration); rtp_rtcp->SetSendingStatus(false); rtp_rtcp->SetSendingMediaStatus(false); rtp_rtcp->SetRTCPStatus(RtcpMode::kCompound); auto sender_video = absl::make_unique( configuration.clock, rtp_rtcp->RtpSender(), configuration.flexfec_sender, playout_delay_oracle.get(), frame_encryptor, crypto_options.sframe.require_frame_encryption, rtp_config.lntf.enabled, FieldTrialBasedConfig()); rtp_streams.emplace_back(std::move(playout_delay_oracle), std::move(rtp_rtcp), std::move(sender_video)); } return rtp_streams; } bool PayloadTypeSupportsSkippingFecPackets(const std::string& payload_name) { const VideoCodecType codecType = PayloadStringToCodecType(payload_name); if (codecType == kVideoCodecVP8 || codecType == kVideoCodecVP9) { return true; } if (codecType == kVideoCodecGeneric && field_trial::IsEnabled("WebRTC-GenericPictureId")) { return true; } return false; } // TODO(brandtr): Update this function when we support multistream protection. std::unique_ptr MaybeCreateFlexfecSender( Clock* clock, const RtpConfig& rtp, const std::map& suspended_ssrcs) { if (rtp.flexfec.payload_type < 0) { return nullptr; } RTC_DCHECK_GE(rtp.flexfec.payload_type, 0); RTC_DCHECK_LE(rtp.flexfec.payload_type, 127); if (rtp.flexfec.ssrc == 0) { RTC_LOG(LS_WARNING) << "FlexFEC is enabled, but no FlexFEC SSRC given. " "Therefore disabling FlexFEC."; return nullptr; } if (rtp.flexfec.protected_media_ssrcs.empty()) { RTC_LOG(LS_WARNING) << "FlexFEC is enabled, but no protected media SSRC given. " "Therefore disabling FlexFEC."; return nullptr; } if (rtp.flexfec.protected_media_ssrcs.size() > 1) { RTC_LOG(LS_WARNING) << "The supplied FlexfecConfig contained multiple protected " "media streams, but our implementation currently only " "supports protecting a single media stream. " "To avoid confusion, disabling FlexFEC completely."; return nullptr; } const RtpState* rtp_state = nullptr; auto it = suspended_ssrcs.find(rtp.flexfec.ssrc); if (it != suspended_ssrcs.end()) { rtp_state = &it->second; } RTC_DCHECK_EQ(1U, rtp.flexfec.protected_media_ssrcs.size()); return absl::make_unique( rtp.flexfec.payload_type, rtp.flexfec.ssrc, rtp.flexfec.protected_media_ssrcs[0], rtp.mid, rtp.extensions, RTPSender::FecExtensionSizes(), rtp_state, clock); } DataRate CalculateOverheadRate(DataRate data_rate, DataSize packet_size, DataSize overhead_per_packet) { Frequency packet_rate = data_rate / packet_size; // TOSO(srte): We should not need to round to nearest whole packet per second // rate here. return packet_rate.RoundUpTo(Frequency::hertz(1)) * overhead_per_packet; } } // namespace RtpVideoSender::RtpVideoSender( Clock* clock, std::map suspended_ssrcs, const std::map& states, const RtpConfig& rtp_config, int rtcp_report_interval_ms, Transport* send_transport, const RtpSenderObservers& observers, RtpTransportControllerSendInterface* transport, RtcEventLog* event_log, RateLimiter* retransmission_limiter, std::unique_ptr fec_controller, FrameEncryptorInterface* frame_encryptor, const CryptoOptions& crypto_options) : send_side_bwe_with_overhead_( webrtc::field_trial::IsEnabled("WebRTC-SendSideBwe-WithOverhead")), account_for_packetization_overhead_(!webrtc::field_trial::IsDisabled( "WebRTC-SubtractPacketizationOverhead")), use_early_loss_detection_( !webrtc::field_trial::IsDisabled("WebRTC-UseEarlyLossDetection")), active_(false), module_process_thread_(nullptr), suspended_ssrcs_(std::move(suspended_ssrcs)), flexfec_sender_( MaybeCreateFlexfecSender(clock, rtp_config, suspended_ssrcs_)), fec_controller_(std::move(fec_controller)), rtp_streams_( CreateRtpStreamSenders(clock, rtp_config, rtcp_report_interval_ms, send_transport, observers.intra_frame_callback, observers.rtcp_loss_notification_observer, transport->GetBandwidthObserver(), transport, observers.rtcp_rtt_stats, flexfec_sender_.get(), observers.bitrate_observer, observers.rtcp_type_observer, observers.send_delay_observer, observers.send_packet_observer, event_log, retransmission_limiter, this, frame_encryptor, crypto_options)), rtp_config_(rtp_config), transport_(transport), transport_overhead_bytes_per_packet_(0), overhead_bytes_per_packet_(0), encoder_target_rate_bps_(0), frame_counts_(rtp_config.ssrcs.size()), frame_count_observer_(observers.frame_count_observer) { RTC_DCHECK_EQ(rtp_config_.ssrcs.size(), rtp_streams_.size()); module_process_thread_checker_.Detach(); // SSRCs are assumed to be sorted in the same order as |rtp_modules|. for (uint32_t ssrc : rtp_config_.ssrcs) { // Restore state if it previously existed. const RtpPayloadState* state = nullptr; auto it = states.find(ssrc); if (it != states.end()) { state = &it->second; shared_frame_id_ = std::max(shared_frame_id_, state->shared_frame_id); } params_.push_back(RtpPayloadParams(ssrc, state)); } // RTP/RTCP initialization. // We add the highest spatial layer first to ensure it'll be prioritized // when sending padding, with the hope that the packet rate will be smaller, // and that it's more important to protect than the lower layers. // TODO(nisse): Consider moving registration with PacketRouter last, after the // modules are fully configured. for (const RtpStreamSender& stream : rtp_streams_) { constexpr bool remb_candidate = true; transport->packet_router()->AddSendRtpModule(stream.rtp_rtcp.get(), remb_candidate); } for (size_t i = 0; i < rtp_config_.extensions.size(); ++i) { const std::string& extension = rtp_config_.extensions[i].uri; int id = rtp_config_.extensions[i].id; RTC_DCHECK(RtpExtension::IsSupportedForVideo(extension)); for (const RtpStreamSender& stream : rtp_streams_) { RTC_CHECK(stream.rtp_rtcp->RegisterRtpHeaderExtension(extension, id)); } } ConfigureProtection(); ConfigureSsrcs(); ConfigureRids(); if (!rtp_config_.mid.empty()) { for (const RtpStreamSender& stream : rtp_streams_) { stream.rtp_rtcp->SetMid(rtp_config_.mid); } } for (const RtpStreamSender& stream : rtp_streams_) { // Simulcast has one module for each layer. Set the CNAME on all modules. stream.rtp_rtcp->SetCNAME(rtp_config_.c_name.c_str()); stream.rtp_rtcp->RegisterRtcpStatisticsCallback(observers.rtcp_stats); stream.rtp_rtcp->SetReportBlockDataObserver( observers.report_block_data_observer); stream.rtp_rtcp->RegisterSendChannelRtpStatisticsCallback( observers.rtp_stats); stream.rtp_rtcp->SetMaxRtpPacketSize(rtp_config_.max_packet_size); stream.rtp_rtcp->RegisterSendPayloadFrequency(rtp_config_.payload_type, kVideoPayloadTypeFrequency); stream.sender_video->RegisterPayloadType(rtp_config_.payload_type, rtp_config_.payload_name, rtp_config_.raw_payload); } // Currently, both ULPFEC and FlexFEC use the same FEC rate calculation logic, // so enable that logic if either of those FEC schemes are enabled. fec_controller_->SetProtectionMethod(FecEnabled(), NackEnabled()); fec_controller_->SetProtectionCallback(this); // Signal congestion controller this object is ready for OnPacket* callbacks. transport_->RegisterPacketFeedbackObserver(this); } RtpVideoSender::~RtpVideoSender() { for (const RtpStreamSender& stream : rtp_streams_) { transport_->packet_router()->RemoveSendRtpModule(stream.rtp_rtcp.get()); } transport_->DeRegisterPacketFeedbackObserver(this); } void RtpVideoSender::RegisterProcessThread( ProcessThread* module_process_thread) { RTC_DCHECK_RUN_ON(&module_process_thread_checker_); RTC_DCHECK(!module_process_thread_); module_process_thread_ = module_process_thread; for (const RtpStreamSender& stream : rtp_streams_) { module_process_thread_->RegisterModule(stream.rtp_rtcp.get(), RTC_FROM_HERE); } } void RtpVideoSender::DeRegisterProcessThread() { RTC_DCHECK_RUN_ON(&module_process_thread_checker_); for (const RtpStreamSender& stream : rtp_streams_) module_process_thread_->DeRegisterModule(stream.rtp_rtcp.get()); } void RtpVideoSender::SetActive(bool active) { rtc::CritScope lock(&crit_); if (active_ == active) return; const std::vector active_modules(rtp_streams_.size(), active); SetActiveModules(active_modules); } void RtpVideoSender::SetActiveModules(const std::vector active_modules) { rtc::CritScope lock(&crit_); RTC_DCHECK_EQ(rtp_streams_.size(), active_modules.size()); active_ = false; for (size_t i = 0; i < active_modules.size(); ++i) { if (active_modules[i]) { active_ = true; } // Sends a kRtcpByeCode when going from true to false. rtp_streams_[i].rtp_rtcp->SetSendingStatus(active_modules[i]); // If set to false this module won't send media. rtp_streams_[i].rtp_rtcp->SetSendingMediaStatus(active_modules[i]); } } bool RtpVideoSender::IsActive() { rtc::CritScope lock(&crit_); return active_ && !rtp_streams_.empty(); } EncodedImageCallback::Result RtpVideoSender::OnEncodedImage( const EncodedImage& encoded_image, const CodecSpecificInfo* codec_specific_info, const RTPFragmentationHeader* fragmentation) { fec_controller_->UpdateWithEncodedData(encoded_image.size(), encoded_image._frameType); rtc::CritScope lock(&crit_); RTC_DCHECK(!rtp_streams_.empty()); if (!active_) return Result(Result::ERROR_SEND_FAILED); shared_frame_id_++; size_t stream_index = 0; if (codec_specific_info && (codec_specific_info->codecType == kVideoCodecVP8 || codec_specific_info->codecType == kVideoCodecH264 || codec_specific_info->codecType == kVideoCodecGeneric)) { // Map spatial index to simulcast. stream_index = encoded_image.SpatialIndex().value_or(0); } RTC_DCHECK_LT(stream_index, rtp_streams_.size()); RTPVideoHeader rtp_video_header = params_[stream_index].GetRtpVideoHeader( encoded_image, codec_specific_info, shared_frame_id_); uint32_t rtp_timestamp = encoded_image.Timestamp() + rtp_streams_[stream_index].rtp_rtcp->StartTimestamp(); // RTCPSender has it's own copy of the timestamp offset, added in // RTCPSender::BuildSR, hence we must not add the in the offset for this call. // TODO(nisse): Delete RTCPSender:timestamp_offset_, and see if we can confine // knowledge of the offset to a single place. if (!rtp_streams_[stream_index].rtp_rtcp->OnSendingRtpFrame( encoded_image.Timestamp(), encoded_image.capture_time_ms_, rtp_config_.payload_type, encoded_image._frameType == VideoFrameType::kVideoFrameKey)) { // The payload router could be active but this module isn't sending. return Result(Result::ERROR_SEND_FAILED); } absl::optional expected_retransmission_time_ms; if (encoded_image.RetransmissionAllowed()) { expected_retransmission_time_ms = rtp_streams_[stream_index].rtp_rtcp->ExpectedRetransmissionTimeMs(); } bool send_result = rtp_streams_[stream_index].sender_video->SendVideo( encoded_image._frameType, rtp_config_.payload_type, rtp_timestamp, encoded_image.capture_time_ms_, encoded_image.data(), encoded_image.size(), fragmentation, &rtp_video_header, expected_retransmission_time_ms); if (frame_count_observer_) { FrameCounts& counts = frame_counts_[stream_index]; if (encoded_image._frameType == VideoFrameType::kVideoFrameKey) { ++counts.key_frames; } else if (encoded_image._frameType == VideoFrameType::kVideoFrameDelta) { ++counts.delta_frames; } else { RTC_DCHECK(encoded_image._frameType == VideoFrameType::kEmptyFrame); } frame_count_observer_->FrameCountUpdated(counts, rtp_config_.ssrcs[stream_index]); } if (!send_result) return Result(Result::ERROR_SEND_FAILED); return Result(Result::OK, rtp_timestamp); } void RtpVideoSender::OnBitrateAllocationUpdated( const VideoBitrateAllocation& bitrate) { rtc::CritScope lock(&crit_); if (IsActive()) { if (rtp_streams_.size() == 1) { // If spatial scalability is enabled, it is covered by a single stream. rtp_streams_[0].rtp_rtcp->SetVideoBitrateAllocation(bitrate); } else { std::vector> layer_bitrates = bitrate.GetSimulcastAllocations(); // Simulcast is in use, split the VideoBitrateAllocation into one struct // per rtp stream, moving over the temporal layer allocation. for (size_t i = 0; i < rtp_streams_.size(); ++i) { // The next spatial layer could be used if the current one is // inactive. if (layer_bitrates[i]) { rtp_streams_[i].rtp_rtcp->SetVideoBitrateAllocation( *layer_bitrates[i]); } else { // Signal a 0 bitrate on a simulcast stream. rtp_streams_[i].rtp_rtcp->SetVideoBitrateAllocation( VideoBitrateAllocation()); } } } } } void RtpVideoSender::ConfigureProtection() { // Consistency of FlexFEC parameters is checked in MaybeCreateFlexfecSender. const bool flexfec_enabled = (flexfec_sender_ != nullptr); // Consistency of NACK and RED+ULPFEC parameters is checked in this function. const bool nack_enabled = rtp_config_.nack.rtp_history_ms > 0; int red_payload_type = rtp_config_.ulpfec.red_payload_type; int ulpfec_payload_type = rtp_config_.ulpfec.ulpfec_payload_type; // Shorthands. auto IsRedEnabled = [&]() { return red_payload_type >= 0; }; auto IsUlpfecEnabled = [&]() { return ulpfec_payload_type >= 0; }; auto DisableRedAndUlpfec = [&]() { red_payload_type = -1; ulpfec_payload_type = -1; }; if (webrtc::field_trial::IsEnabled("WebRTC-DisableUlpFecExperiment")) { RTC_LOG(LS_INFO) << "Experiment to disable sending ULPFEC is enabled."; DisableRedAndUlpfec(); } // If enabled, FlexFEC takes priority over RED+ULPFEC. if (flexfec_enabled) { if (IsUlpfecEnabled()) { RTC_LOG(LS_INFO) << "Both FlexFEC and ULPFEC are configured. Disabling ULPFEC."; } DisableRedAndUlpfec(); } // Payload types without picture ID cannot determine that a stream is complete // without retransmitting FEC, so using ULPFEC + NACK for H.264 (for instance) // is a waste of bandwidth since FEC packets still have to be transmitted. // Note that this is not the case with FlexFEC. if (nack_enabled && IsUlpfecEnabled() && !PayloadTypeSupportsSkippingFecPackets(rtp_config_.payload_name)) { RTC_LOG(LS_WARNING) << "Transmitting payload type without picture ID using " "NACK+ULPFEC is a waste of bandwidth since ULPFEC packets " "also have to be retransmitted. Disabling ULPFEC."; DisableRedAndUlpfec(); } // Verify payload types. if (IsUlpfecEnabled() ^ IsRedEnabled()) { RTC_LOG(LS_WARNING) << "Only RED or only ULPFEC enabled, but not both. Disabling both."; DisableRedAndUlpfec(); } for (const RtpStreamSender& stream : rtp_streams_) { // Set NACK. stream.rtp_rtcp->SetStorePacketsStatus(true, kMinSendSidePacketHistorySize); // Set RED/ULPFEC information. stream.sender_video->SetUlpfecConfig(red_payload_type, ulpfec_payload_type); } } bool RtpVideoSender::FecEnabled() const { const bool flexfec_enabled = (flexfec_sender_ != nullptr); const bool ulpfec_enabled = !webrtc::field_trial::IsEnabled("WebRTC-DisableUlpFecExperiment") && (rtp_config_.ulpfec.ulpfec_payload_type >= 0); return flexfec_enabled || ulpfec_enabled; } bool RtpVideoSender::NackEnabled() const { const bool nack_enabled = rtp_config_.nack.rtp_history_ms > 0; return nack_enabled; } uint32_t RtpVideoSender::GetPacketizationOverheadRate() const { uint32_t packetization_overhead_bps = 0; for (size_t i = 0; i < rtp_streams_.size(); ++i) { if (rtp_streams_[i].rtp_rtcp->SendingMedia()) { packetization_overhead_bps += rtp_streams_[i].sender_video->PacketizationOverheadBps(); } } return packetization_overhead_bps; } void RtpVideoSender::DeliverRtcp(const uint8_t* packet, size_t length) { // Runs on a network thread. for (const RtpStreamSender& stream : rtp_streams_) stream.rtp_rtcp->IncomingRtcpPacket(packet, length); } void RtpVideoSender::ConfigureSsrcs() { // Configure regular SSRCs. RTC_CHECK(ssrc_to_rtp_sender_.empty()); for (size_t i = 0; i < rtp_config_.ssrcs.size(); ++i) { uint32_t ssrc = rtp_config_.ssrcs[i]; RtpRtcp* const rtp_rtcp = rtp_streams_[i].rtp_rtcp.get(); rtp_rtcp->SetSSRC(ssrc); // Restore RTP state if previous existed. auto it = suspended_ssrcs_.find(ssrc); if (it != suspended_ssrcs_.end()) rtp_rtcp->SetRtpState(it->second); RTPSender* rtp_sender = rtp_rtcp->RtpSender(); RTC_DCHECK(rtp_sender != nullptr); ssrc_to_rtp_sender_[ssrc] = rtp_sender; } // Set up RTX if available. if (rtp_config_.rtx.ssrcs.empty()) return; // Configure RTX SSRCs. RTC_DCHECK_EQ(rtp_config_.rtx.ssrcs.size(), rtp_config_.ssrcs.size()); for (size_t i = 0; i < rtp_config_.rtx.ssrcs.size(); ++i) { uint32_t ssrc = rtp_config_.rtx.ssrcs[i]; RtpRtcp* const rtp_rtcp = rtp_streams_[i].rtp_rtcp.get(); rtp_rtcp->SetRtxSsrc(ssrc); auto it = suspended_ssrcs_.find(ssrc); if (it != suspended_ssrcs_.end()) rtp_rtcp->SetRtxState(it->second); } // Configure RTX payload types. RTC_DCHECK_GE(rtp_config_.rtx.payload_type, 0); for (const RtpStreamSender& stream : rtp_streams_) { stream.rtp_rtcp->SetRtxSendPayloadType(rtp_config_.rtx.payload_type, rtp_config_.payload_type); stream.rtp_rtcp->SetRtxSendStatus(kRtxRetransmitted | kRtxRedundantPayloads); } if (rtp_config_.ulpfec.red_payload_type != -1 && rtp_config_.ulpfec.red_rtx_payload_type != -1) { for (const RtpStreamSender& stream : rtp_streams_) { stream.rtp_rtcp->SetRtxSendPayloadType( rtp_config_.ulpfec.red_rtx_payload_type, rtp_config_.ulpfec.red_payload_type); } } } void RtpVideoSender::ConfigureRids() { RTC_DCHECK(rtp_config_.rids.empty() || rtp_config_.rids.size() == rtp_config_.ssrcs.size()); RTC_DCHECK(rtp_config_.rids.empty() || rtp_config_.rids.size() == rtp_streams_.size()); for (size_t i = 0; i < rtp_config_.rids.size(); ++i) { const std::string& rid = rtp_config_.rids[i]; rtp_streams_[i].rtp_rtcp->SetRid(rid); } } void RtpVideoSender::OnNetworkAvailability(bool network_available) { for (const RtpStreamSender& stream : rtp_streams_) { stream.rtp_rtcp->SetRTCPStatus(network_available ? rtp_config_.rtcp_mode : RtcpMode::kOff); } } std::map RtpVideoSender::GetRtpStates() const { std::map rtp_states; for (size_t i = 0; i < rtp_config_.ssrcs.size(); ++i) { uint32_t ssrc = rtp_config_.ssrcs[i]; RTC_DCHECK_EQ(ssrc, rtp_streams_[i].rtp_rtcp->SSRC()); rtp_states[ssrc] = rtp_streams_[i].rtp_rtcp->GetRtpState(); } for (size_t i = 0; i < rtp_config_.rtx.ssrcs.size(); ++i) { uint32_t ssrc = rtp_config_.rtx.ssrcs[i]; rtp_states[ssrc] = rtp_streams_[i].rtp_rtcp->GetRtxState(); } if (flexfec_sender_) { uint32_t ssrc = rtp_config_.flexfec.ssrc; rtp_states[ssrc] = flexfec_sender_->GetRtpState(); } return rtp_states; } std::map RtpVideoSender::GetRtpPayloadStates() const { rtc::CritScope lock(&crit_); std::map payload_states; for (const auto& param : params_) { payload_states[param.ssrc()] = param.state(); payload_states[param.ssrc()].shared_frame_id = shared_frame_id_; } return payload_states; } void RtpVideoSender::OnTransportOverheadChanged( size_t transport_overhead_bytes_per_packet) { rtc::CritScope lock(&crit_); transport_overhead_bytes_per_packet_ = transport_overhead_bytes_per_packet; size_t max_rtp_packet_size = std::min(rtp_config_.max_packet_size, kPathMTU - transport_overhead_bytes_per_packet_); for (const RtpStreamSender& stream : rtp_streams_) { stream.rtp_rtcp->SetMaxRtpPacketSize(max_rtp_packet_size); } } void RtpVideoSender::OnOverheadChanged(size_t overhead_bytes_per_packet) { rtc::CritScope lock(&crit_); overhead_bytes_per_packet_ = overhead_bytes_per_packet; } void RtpVideoSender::OnBitrateUpdated(uint32_t bitrate_bps, uint8_t fraction_loss, int64_t rtt, int framerate) { // Substract overhead from bitrate. rtc::CritScope lock(&crit_); DataSize packet_overhead = DataSize::bytes( overhead_bytes_per_packet_ + transport_overhead_bytes_per_packet_); DataSize max_total_packet_size = DataSize::bytes( rtp_config_.max_packet_size + transport_overhead_bytes_per_packet_); uint32_t payload_bitrate_bps = bitrate_bps; if (send_side_bwe_with_overhead_) { DataRate overhead_rate = CalculateOverheadRate( DataRate::bps(bitrate_bps), max_total_packet_size, packet_overhead); // TODO(srte): We probably should not accept 0 payload bitrate here. payload_bitrate_bps = rtc::saturated_cast(bitrate_bps - overhead_rate.bps()); } // Get the encoder target rate. It is the estimated network rate - // protection overhead. encoder_target_rate_bps_ = fec_controller_->UpdateFecRates( payload_bitrate_bps, framerate, fraction_loss, loss_mask_vector_, rtt); uint32_t packetization_rate_bps = 0; if (account_for_packetization_overhead_) { // Subtract packetization overhead from the encoder target. If target rate // is really low, cap the overhead at 50%. This also avoids the case where // |encoder_target_rate_bps_| is 0 due to encoder pause event while the // packetization rate is positive since packets are still flowing. packetization_rate_bps = std::min(GetPacketizationOverheadRate(), encoder_target_rate_bps_ / 2); encoder_target_rate_bps_ -= packetization_rate_bps; } loss_mask_vector_.clear(); uint32_t encoder_overhead_rate_bps = 0; if (send_side_bwe_with_overhead_) { // TODO(srte): The packet size should probably be the same as in the // CalculateOverheadRate call above (just max_total_packet_size), it doesn't // make sense to use different packet rates for different overhead // calculations. DataRate encoder_overhead_rate = CalculateOverheadRate( DataRate::bps(encoder_target_rate_bps_), max_total_packet_size - DataSize::bytes(overhead_bytes_per_packet_), packet_overhead); encoder_overhead_rate_bps = std::min(encoder_overhead_rate.bps(), bitrate_bps - encoder_target_rate_bps_); } // When the field trial "WebRTC-SendSideBwe-WithOverhead" is enabled // protection_bitrate includes overhead. const uint32_t media_rate = encoder_target_rate_bps_ + encoder_overhead_rate_bps + packetization_rate_bps; RTC_DCHECK_GE(bitrate_bps, media_rate); protection_bitrate_bps_ = bitrate_bps - media_rate; } uint32_t RtpVideoSender::GetPayloadBitrateBps() const { return encoder_target_rate_bps_; } uint32_t RtpVideoSender::GetProtectionBitrateBps() const { return protection_bitrate_bps_; } std::vector RtpVideoSender::GetSentRtpPacketInfos( uint32_t ssrc, rtc::ArrayView sequence_numbers) const { for (const auto& rtp_stream : rtp_streams_) { if (ssrc == rtp_stream.rtp_rtcp->SSRC()) { return rtp_stream.sender_video->GetSentRtpPacketInfos(sequence_numbers); } } return std::vector(); } int RtpVideoSender::ProtectionRequest(const FecProtectionParams* delta_params, const FecProtectionParams* key_params, uint32_t* sent_video_rate_bps, uint32_t* sent_nack_rate_bps, uint32_t* sent_fec_rate_bps) { *sent_video_rate_bps = 0; *sent_nack_rate_bps = 0; *sent_fec_rate_bps = 0; for (const RtpStreamSender& stream : rtp_streams_) { uint32_t not_used = 0; uint32_t module_nack_rate = 0; stream.sender_video->SetFecParameters(*delta_params, *key_params); *sent_video_rate_bps += stream.sender_video->VideoBitrateSent(); *sent_fec_rate_bps += stream.sender_video->FecOverheadRate(); stream.rtp_rtcp->BitrateSent(¬_used, /*video_rate=*/nullptr, /*fec_rate=*/nullptr, &module_nack_rate); *sent_nack_rate_bps += module_nack_rate; } return 0; } void RtpVideoSender::SetFecAllowed(bool fec_allowed) { // TODO(bugs.webrtc.og/10769): Handle this message. } void RtpVideoSender::OnPacketFeedbackVector( const std::vector& packet_feedback_vector) { if (fec_controller_->UseLossVectorMask()) { rtc::CritScope cs(&crit_); for (const PacketFeedback& packet : packet_feedback_vector) { if (packet.send_time_ms == PacketFeedback::kNoSendTime || !packet.ssrc || absl::c_find(rtp_config_.ssrcs, *packet.ssrc) == rtp_config_.ssrcs.end()) { // If packet send time is missing, the feedback for this packet has // probably already been processed, so ignore it. // If packet does not belong to a registered media ssrc, we are also // not interested in it. continue; } loss_mask_vector_.push_back(packet.arrival_time_ms == PacketFeedback::kNotReceived); } } // Map from SSRC to all acked packets for that RTP module. std::map> acked_packets_per_ssrc; for (const PacketFeedback& packet : packet_feedback_vector) { if (packet.ssrc && packet.arrival_time_ms != PacketFeedback::kNotReceived) { acked_packets_per_ssrc[*packet.ssrc].push_back( packet.rtp_sequence_number); } } if (use_early_loss_detection_) { // Map from SSRC to vector of RTP sequence numbers that are indicated as // lost by feedback, without being trailed by any received packets. std::map> early_loss_detected_per_ssrc; for (const PacketFeedback& packet : packet_feedback_vector) { if (packet.send_time_ms == PacketFeedback::kNoSendTime || !packet.ssrc || absl::c_find(rtp_config_.ssrcs, *packet.ssrc) == rtp_config_.ssrcs.end()) { // If packet send time is missing, the feedback for this packet has // probably already been processed, so ignore it. // If packet does not belong to a registered media ssrc, we are also // not interested in it. continue; } if (packet.arrival_time_ms == PacketFeedback::kNotReceived) { // Last known lost packet, might not be detectable as lost by remote // jitter buffer. early_loss_detected_per_ssrc[*packet.ssrc].push_back( packet.rtp_sequence_number); } else { // Packet received, so any loss prior to this is already detectable. early_loss_detected_per_ssrc.erase(*packet.ssrc); } } for (const auto& kv : early_loss_detected_per_ssrc) { const uint32_t ssrc = kv.first; auto it = ssrc_to_rtp_sender_.find(ssrc); RTC_DCHECK(it != ssrc_to_rtp_sender_.end()); RTPSender* rtp_sender = it->second; for (uint16_t sequence_number : kv.second) { rtp_sender->ReSendPacket(sequence_number); } } } for (const auto& kv : acked_packets_per_ssrc) { const uint32_t ssrc = kv.first; auto it = ssrc_to_rtp_sender_.find(ssrc); if (it == ssrc_to_rtp_sender_.end()) { // Packets not for a media SSRC, so likely RTX or FEC. If so, ignore // since there's no RTP history to clean up anyway. continue; } rtc::ArrayView rtp_sequence_numbers(kv.second); it->second->OnPacketsAcknowledged(rtp_sequence_numbers); } } void RtpVideoSender::SetEncodingData(size_t width, size_t height, size_t num_temporal_layers) { fec_controller_->SetEncodingData(width, height, num_temporal_layers, rtp_config_.max_packet_size); } } // namespace webrtc