/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include // For ULONG_MAX returned by strtoul. #include #include // For strtoul. #include #include #include #include #include #include "gflags/gflags.h" #include "webrtc/base/checks.h" #include "webrtc/modules/audio_coding/neteq/include/neteq.h" #include "webrtc/modules/audio_coding/neteq/tools/fake_decode_from_file.h" #include "webrtc/modules/audio_coding/neteq/tools/input_audio_file.h" #include "webrtc/modules/audio_coding/neteq/tools/neteq_packet_source_input.h" #include "webrtc/modules/audio_coding/neteq/tools/neteq_replacement_input.h" #include "webrtc/modules/audio_coding/neteq/tools/neteq_test.h" #include "webrtc/modules/audio_coding/neteq/tools/output_audio_file.h" #include "webrtc/modules/audio_coding/neteq/tools/output_wav_file.h" #include "webrtc/modules/audio_coding/neteq/tools/rtp_file_source.h" #include "webrtc/modules/include/module_common_types.h" #include "webrtc/test/testsupport/fileutils.h" #include "webrtc/typedefs.h" namespace webrtc { namespace test { namespace { // Parses the input string for a valid SSRC (at the start of the string). If a // valid SSRC is found, it is written to the output variable |ssrc|, and true is // returned. Otherwise, false is returned. bool ParseSsrc(const std::string& str, uint32_t* ssrc) { if (str.empty()) return true; int base = 10; // Look for "0x" or "0X" at the start and change base to 16 if found. if ((str.compare(0, 2, "0x") == 0) || (str.compare(0, 2, "0X") == 0)) base = 16; errno = 0; char* end_ptr; unsigned long value = strtoul(str.c_str(), &end_ptr, base); if (value == ULONG_MAX && errno == ERANGE) return false; // Value out of range for unsigned long. if (sizeof(unsigned long) > sizeof(uint32_t) && value > 0xFFFFFFFF) return false; // Value out of range for uint32_t. if (end_ptr - str.c_str() < static_cast(str.length())) return false; // Part of the string was not parsed. *ssrc = static_cast(value); return true; } // Flag validators. bool ValidatePayloadType(const char* flagname, int32_t value) { if (value >= 0 && value <= 127) // Value is ok. return true; printf("Invalid value for --%s: %d\n", flagname, static_cast(value)); return false; } bool ValidateSsrcValue(const char* flagname, const std::string& str) { uint32_t dummy_ssrc; return ParseSsrc(str, &dummy_ssrc); } static bool ValidateExtensionId(const char* flagname, int32_t value) { if (value > 0 && value <= 255) // Value is ok. return true; printf("Invalid value for --%s: %d\n", flagname, static_cast(value)); return false; } // Define command line flags. DEFINE_int32(pcmu, 0, "RTP payload type for PCM-u"); const bool pcmu_dummy = google::RegisterFlagValidator(&FLAGS_pcmu, &ValidatePayloadType); DEFINE_int32(pcma, 8, "RTP payload type for PCM-a"); const bool pcma_dummy = google::RegisterFlagValidator(&FLAGS_pcma, &ValidatePayloadType); DEFINE_int32(ilbc, 102, "RTP payload type for iLBC"); const bool ilbc_dummy = google::RegisterFlagValidator(&FLAGS_ilbc, &ValidatePayloadType); DEFINE_int32(isac, 103, "RTP payload type for iSAC"); const bool isac_dummy = google::RegisterFlagValidator(&FLAGS_isac, &ValidatePayloadType); DEFINE_int32(isac_swb, 104, "RTP payload type for iSAC-swb (32 kHz)"); const bool isac_swb_dummy = google::RegisterFlagValidator(&FLAGS_isac_swb, &ValidatePayloadType); DEFINE_int32(opus, 111, "RTP payload type for Opus"); const bool opus_dummy = google::RegisterFlagValidator(&FLAGS_opus, &ValidatePayloadType); DEFINE_int32(pcm16b, 93, "RTP payload type for PCM16b-nb (8 kHz)"); const bool pcm16b_dummy = google::RegisterFlagValidator(&FLAGS_pcm16b, &ValidatePayloadType); DEFINE_int32(pcm16b_wb, 94, "RTP payload type for PCM16b-wb (16 kHz)"); const bool pcm16b_wb_dummy = google::RegisterFlagValidator(&FLAGS_pcm16b_wb, &ValidatePayloadType); DEFINE_int32(pcm16b_swb32, 95, "RTP payload type for PCM16b-swb32 (32 kHz)"); const bool pcm16b_swb32_dummy = google::RegisterFlagValidator(&FLAGS_pcm16b_swb32, &ValidatePayloadType); DEFINE_int32(pcm16b_swb48, 96, "RTP payload type for PCM16b-swb48 (48 kHz)"); const bool pcm16b_swb48_dummy = google::RegisterFlagValidator(&FLAGS_pcm16b_swb48, &ValidatePayloadType); DEFINE_int32(g722, 9, "RTP payload type for G.722"); const bool g722_dummy = google::RegisterFlagValidator(&FLAGS_g722, &ValidatePayloadType); DEFINE_int32(avt, 106, "RTP payload type for AVT/DTMF (8 kHz)"); const bool avt_dummy = google::RegisterFlagValidator(&FLAGS_avt, &ValidatePayloadType); DEFINE_int32(avt_16, 114, "RTP payload type for AVT/DTMF (16 kHz)"); const bool avt_16_dummy = google::RegisterFlagValidator(&FLAGS_avt_16, &ValidatePayloadType); DEFINE_int32(avt_32, 115, "RTP payload type for AVT/DTMF (32 kHz)"); const bool avt_32_dummy = google::RegisterFlagValidator(&FLAGS_avt_32, &ValidatePayloadType); DEFINE_int32(avt_48, 116, "RTP payload type for AVT/DTMF (48 kHz)"); const bool avt_48_dummy = google::RegisterFlagValidator(&FLAGS_avt_48, &ValidatePayloadType); DEFINE_int32(red, 117, "RTP payload type for redundant audio (RED)"); const bool red_dummy = google::RegisterFlagValidator(&FLAGS_red, &ValidatePayloadType); DEFINE_int32(cn_nb, 13, "RTP payload type for comfort noise (8 kHz)"); const bool cn_nb_dummy = google::RegisterFlagValidator(&FLAGS_cn_nb, &ValidatePayloadType); DEFINE_int32(cn_wb, 98, "RTP payload type for comfort noise (16 kHz)"); const bool cn_wb_dummy = google::RegisterFlagValidator(&FLAGS_cn_wb, &ValidatePayloadType); DEFINE_int32(cn_swb32, 99, "RTP payload type for comfort noise (32 kHz)"); const bool cn_swb32_dummy = google::RegisterFlagValidator(&FLAGS_cn_swb32, &ValidatePayloadType); DEFINE_int32(cn_swb48, 100, "RTP payload type for comfort noise (48 kHz)"); const bool cn_swb48_dummy = google::RegisterFlagValidator(&FLAGS_cn_swb48, &ValidatePayloadType); DEFINE_bool(codec_map, false, "Prints the mapping between RTP payload type and " "codec"); DEFINE_string(replacement_audio_file, "", "A PCM file that will be used to populate ""dummy"" RTP packets"); DEFINE_string(ssrc, "", "Only use packets with this SSRC (decimal or hex, the latter " "starting with 0x)"); const bool hex_ssrc_dummy = google::RegisterFlagValidator(&FLAGS_ssrc, &ValidateSsrcValue); DEFINE_int32(audio_level, 1, "Extension ID for audio level (RFC 6464)"); const bool audio_level_dummy = google::RegisterFlagValidator(&FLAGS_audio_level, &ValidateExtensionId); DEFINE_int32(abs_send_time, 3, "Extension ID for absolute sender time"); const bool abs_send_time_dummy = google::RegisterFlagValidator(&FLAGS_abs_send_time, &ValidateExtensionId); // Maps a codec type to a printable name string. std::string CodecName(NetEqDecoder codec) { switch (codec) { case NetEqDecoder::kDecoderPCMu: return "PCM-u"; case NetEqDecoder::kDecoderPCMa: return "PCM-a"; case NetEqDecoder::kDecoderILBC: return "iLBC"; case NetEqDecoder::kDecoderISAC: return "iSAC"; case NetEqDecoder::kDecoderISACswb: return "iSAC-swb (32 kHz)"; case NetEqDecoder::kDecoderOpus: return "Opus"; case NetEqDecoder::kDecoderPCM16B: return "PCM16b-nb (8 kHz)"; case NetEqDecoder::kDecoderPCM16Bwb: return "PCM16b-wb (16 kHz)"; case NetEqDecoder::kDecoderPCM16Bswb32kHz: return "PCM16b-swb32 (32 kHz)"; case NetEqDecoder::kDecoderPCM16Bswb48kHz: return "PCM16b-swb48 (48 kHz)"; case NetEqDecoder::kDecoderG722: return "G.722"; case NetEqDecoder::kDecoderRED: return "redundant audio (RED)"; case NetEqDecoder::kDecoderAVT: return "AVT/DTMF (8 kHz)"; case NetEqDecoder::kDecoderAVT16kHz: return "AVT/DTMF (16 kHz)"; case NetEqDecoder::kDecoderAVT32kHz: return "AVT/DTMF (32 kHz)"; case NetEqDecoder::kDecoderAVT48kHz: return "AVT/DTMF (48 kHz)"; case NetEqDecoder::kDecoderCNGnb: return "comfort noise (8 kHz)"; case NetEqDecoder::kDecoderCNGwb: return "comfort noise (16 kHz)"; case NetEqDecoder::kDecoderCNGswb32kHz: return "comfort noise (32 kHz)"; case NetEqDecoder::kDecoderCNGswb48kHz: return "comfort noise (48 kHz)"; default: FATAL(); return "undefined"; } } void PrintCodecMappingEntry(NetEqDecoder codec, google::int32 flag) { std::cout << CodecName(codec) << ": " << flag << std::endl; } void PrintCodecMapping() { PrintCodecMappingEntry(NetEqDecoder::kDecoderPCMu, FLAGS_pcmu); PrintCodecMappingEntry(NetEqDecoder::kDecoderPCMa, FLAGS_pcma); PrintCodecMappingEntry(NetEqDecoder::kDecoderILBC, FLAGS_ilbc); PrintCodecMappingEntry(NetEqDecoder::kDecoderISAC, FLAGS_isac); PrintCodecMappingEntry(NetEqDecoder::kDecoderISACswb, FLAGS_isac_swb); PrintCodecMappingEntry(NetEqDecoder::kDecoderOpus, FLAGS_opus); PrintCodecMappingEntry(NetEqDecoder::kDecoderPCM16B, FLAGS_pcm16b); PrintCodecMappingEntry(NetEqDecoder::kDecoderPCM16Bwb, FLAGS_pcm16b_wb); PrintCodecMappingEntry(NetEqDecoder::kDecoderPCM16Bswb32kHz, FLAGS_pcm16b_swb32); PrintCodecMappingEntry(NetEqDecoder::kDecoderPCM16Bswb48kHz, FLAGS_pcm16b_swb48); PrintCodecMappingEntry(NetEqDecoder::kDecoderG722, FLAGS_g722); PrintCodecMappingEntry(NetEqDecoder::kDecoderAVT, FLAGS_avt); PrintCodecMappingEntry(NetEqDecoder::kDecoderAVT16kHz, FLAGS_avt_16); PrintCodecMappingEntry(NetEqDecoder::kDecoderAVT32kHz, FLAGS_avt_32); PrintCodecMappingEntry(NetEqDecoder::kDecoderAVT48kHz, FLAGS_avt_48); PrintCodecMappingEntry(NetEqDecoder::kDecoderRED, FLAGS_red); PrintCodecMappingEntry(NetEqDecoder::kDecoderCNGnb, FLAGS_cn_nb); PrintCodecMappingEntry(NetEqDecoder::kDecoderCNGwb, FLAGS_cn_wb); PrintCodecMappingEntry(NetEqDecoder::kDecoderCNGswb32kHz, FLAGS_cn_swb32); PrintCodecMappingEntry(NetEqDecoder::kDecoderCNGswb48kHz, FLAGS_cn_swb48); } int CodecSampleRate(uint8_t payload_type) { if (payload_type == FLAGS_pcmu || payload_type == FLAGS_pcma || payload_type == FLAGS_ilbc || payload_type == FLAGS_pcm16b || payload_type == FLAGS_cn_nb || payload_type == FLAGS_avt) return 8000; if (payload_type == FLAGS_isac || payload_type == FLAGS_pcm16b_wb || payload_type == FLAGS_g722 || payload_type == FLAGS_cn_wb || payload_type == FLAGS_avt_16) return 16000; if (payload_type == FLAGS_isac_swb || payload_type == FLAGS_pcm16b_swb32 || payload_type == FLAGS_cn_swb32 || payload_type == FLAGS_avt_32) return 32000; if (payload_type == FLAGS_opus || payload_type == FLAGS_pcm16b_swb48 || payload_type == FLAGS_cn_swb48 || payload_type == FLAGS_avt_48) return 48000; if (payload_type == FLAGS_red) return 0; return -1; } // Class to let through only the packets with a given SSRC. Should be used as an // outer layer on another NetEqInput object. class FilterSsrcInput : public NetEqInput { public: FilterSsrcInput(std::unique_ptr source, uint32_t ssrc) : source_(std::move(source)), ssrc_(ssrc) { FindNextWithCorrectSsrc(); RTC_CHECK(source_->NextHeader()) << "Found no packet with SSRC = 0x" << std::hex << ssrc_; } // All methods but PopPacket() simply relay to the |source_| object. rtc::Optional NextPacketTime() const override { return source_->NextPacketTime(); } rtc::Optional NextOutputEventTime() const override { return source_->NextOutputEventTime(); } // Returns the next packet, and throws away upcoming packets that do not match // the desired SSRC. std::unique_ptr PopPacket() override { std::unique_ptr packet_to_return = source_->PopPacket(); RTC_DCHECK(!packet_to_return || packet_to_return->header.ssrc == ssrc_); // Pre-fetch the next packet with correct SSRC. Hence, |source_| will always // be have a valid packet (or empty if no more packets are available) when // this method returns. FindNextWithCorrectSsrc(); return packet_to_return; } void AdvanceOutputEvent() override { source_->AdvanceOutputEvent(); } bool ended() const override { return source_->ended(); } rtc::Optional NextHeader() const override { return source_->NextHeader(); } private: void FindNextWithCorrectSsrc() { while (source_->NextHeader() && source_->NextHeader()->ssrc != ssrc_) { source_->PopPacket(); } } std::unique_ptr source_; uint32_t ssrc_; }; int RunTest(int argc, char* argv[]) { std::string program_name = argv[0]; std::string usage = "Tool for decoding an RTP dump file using NetEq.\n" "Run " + program_name + " --helpshort for usage.\n" "Example usage:\n" + program_name + " input.rtp output.{pcm, wav}\n"; google::SetUsageMessage(usage); google::ParseCommandLineFlags(&argc, &argv, true); if (FLAGS_codec_map) { PrintCodecMapping(); } if (argc != 3) { if (FLAGS_codec_map) { // We have already printed the codec map. Just end the program. return 0; } // Print usage information. std::cout << google::ProgramUsage(); return 0; } // Gather RTP header extensions in a map. NetEqPacketSourceInput::RtpHeaderExtensionMap rtp_ext_map = { {FLAGS_audio_level, kRtpExtensionAudioLevel}, {FLAGS_abs_send_time, kRtpExtensionAbsoluteSendTime}}; const std::string input_file_name = argv[1]; std::unique_ptr input; if (RtpFileSource::ValidRtpDump(input_file_name) || RtpFileSource::ValidPcap(input_file_name)) { input.reset(new NetEqRtpDumpInput(input_file_name, rtp_ext_map)); } else { input.reset(new NetEqEventLogInput(input_file_name, rtp_ext_map)); } std::cout << "Input file: " << input_file_name << std::endl; RTC_CHECK(input) << "Cannot open input file"; RTC_CHECK(!input->ended()) << "Input file is empty"; // Check if an SSRC value was provided. if (!FLAGS_ssrc.empty()) { uint32_t ssrc; RTC_CHECK(ParseSsrc(FLAGS_ssrc, &ssrc)) << "Flag verification has failed."; input.reset(new FilterSsrcInput(std::move(input), ssrc)); } // Check the sample rate. rtc::Optional first_rtp_header = input->NextHeader(); RTC_CHECK(first_rtp_header); const int sample_rate_hz = CodecSampleRate(first_rtp_header->payloadType); RTC_CHECK_GT(sample_rate_hz, 0); // Open the output file now that we know the sample rate. (Rate is only needed // for wav files.) const std::string output_file_name = argv[2]; std::unique_ptr output; if (output_file_name.size() >= 4 && output_file_name.substr(output_file_name.size() - 4) == ".wav") { // Open a wav file. output.reset(new OutputWavFile(output_file_name, sample_rate_hz)); } else { // Open a pcm file. output.reset(new OutputAudioFile(output_file_name)); } std::cout << "Output file: " << output_file_name << std::endl; NetEqTest::DecoderMap codecs = { {FLAGS_pcmu, std::make_pair(NetEqDecoder::kDecoderPCMu, "pcmu")}, {FLAGS_pcma, std::make_pair(NetEqDecoder::kDecoderPCMa, "pcma")}, {FLAGS_ilbc, std::make_pair(NetEqDecoder::kDecoderILBC, "ilbc")}, {FLAGS_isac, std::make_pair(NetEqDecoder::kDecoderISAC, "isac")}, {FLAGS_isac_swb, std::make_pair(NetEqDecoder::kDecoderISACswb, "isac-swb")}, {FLAGS_opus, std::make_pair(NetEqDecoder::kDecoderOpus, "opus")}, {FLAGS_pcm16b, std::make_pair(NetEqDecoder::kDecoderPCM16B, "pcm16-nb")}, {FLAGS_pcm16b_wb, std::make_pair(NetEqDecoder::kDecoderPCM16Bwb, "pcm16-wb")}, {FLAGS_pcm16b_swb32, std::make_pair(NetEqDecoder::kDecoderPCM16Bswb32kHz, "pcm16-swb32")}, {FLAGS_pcm16b_swb48, std::make_pair(NetEqDecoder::kDecoderPCM16Bswb48kHz, "pcm16-swb48")}, {FLAGS_g722, std::make_pair(NetEqDecoder::kDecoderG722, "g722")}, {FLAGS_avt, std::make_pair(NetEqDecoder::kDecoderAVT, "avt")}, {FLAGS_avt_16, std::make_pair(NetEqDecoder::kDecoderAVT16kHz, "avt-16")}, {FLAGS_avt_32, std::make_pair(NetEqDecoder::kDecoderAVT32kHz, "avt-32")}, {FLAGS_avt_48, std::make_pair(NetEqDecoder::kDecoderAVT48kHz, "avt-48")}, {FLAGS_red, std::make_pair(NetEqDecoder::kDecoderRED, "red")}, {FLAGS_cn_nb, std::make_pair(NetEqDecoder::kDecoderCNGnb, "cng-nb")}, {FLAGS_cn_wb, std::make_pair(NetEqDecoder::kDecoderCNGwb, "cng-wb")}, {FLAGS_cn_swb32, std::make_pair(NetEqDecoder::kDecoderCNGswb32kHz, "cng-swb32")}, {FLAGS_cn_swb48, std::make_pair(NetEqDecoder::kDecoderCNGswb48kHz, "cng-swb48")}}; // Check if a replacement audio file was provided. std::unique_ptr replacement_decoder; NetEqTest::ExtDecoderMap ext_codecs; if (!FLAGS_replacement_audio_file.empty()) { // Find largest unused payload type. int replacement_pt = 127; while (!(codecs.find(replacement_pt) == codecs.end() && ext_codecs.find(replacement_pt) == ext_codecs.end())) { --replacement_pt; RTC_CHECK_GE(replacement_pt, 0); } auto std_set_int32_to_uint8 = [](const std::set& a) { std::set b; for (auto& x : a) { b.insert(static_cast(x)); } return b; }; std::set cn_types = std_set_int32_to_uint8( {FLAGS_cn_nb, FLAGS_cn_wb, FLAGS_cn_swb32, FLAGS_cn_swb48}); std::set forbidden_types = std_set_int32_to_uint8({FLAGS_g722, FLAGS_red, FLAGS_avt, FLAGS_avt_16, FLAGS_avt_32, FLAGS_avt_48}); input.reset(new NetEqReplacementInput(std::move(input), replacement_pt, cn_types, forbidden_types)); replacement_decoder.reset(new FakeDecodeFromFile( std::unique_ptr( new InputAudioFile(FLAGS_replacement_audio_file)), 48000, false)); NetEqTest::ExternalDecoderInfo ext_dec_info = { replacement_decoder.get(), NetEqDecoder::kDecoderArbitrary, "replacement codec"}; ext_codecs[replacement_pt] = ext_dec_info; } DefaultNetEqTestErrorCallback error_cb; NetEq::Config config; config.sample_rate_hz = sample_rate_hz; NetEqTest test(config, codecs, ext_codecs, std::move(input), std::move(output), &error_cb); int64_t test_duration_ms = test.Run(); NetEqNetworkStatistics stats = test.SimulationStats(); printf("Simulation statistics:\n"); printf(" output duration: %" PRId64 " ms\n", test_duration_ms); printf(" packet_loss_rate: %f %%\n", 100.0 * stats.packet_loss_rate / 16384.0); printf(" packet_discard_rate: %f %%\n", 100.0 * stats.packet_discard_rate / 16384.0); printf(" expand_rate: %f %%\n", 100.0 * stats.expand_rate / 16384.0); printf(" speech_expand_rate: %f %%\n", 100.0 * stats.speech_expand_rate / 16384.0); printf(" preemptive_rate: %f %%\n", 100.0 * stats.preemptive_rate / 16384.0); printf(" accelerate_rate: %f %%\n", 100.0 * stats.accelerate_rate / 16384.0); printf(" secondary_decoded_rate: %f %%\n", 100.0 * stats.secondary_decoded_rate / 16384.0); printf(" clockdrift_ppm: %d ppm\n", stats.clockdrift_ppm); printf(" mean_waiting_time_ms: %d ms\n", stats.mean_waiting_time_ms); printf(" median_waiting_time_ms: %d ms\n", stats.median_waiting_time_ms); printf(" min_waiting_time_ms: %d ms\n", stats.min_waiting_time_ms); printf(" max_waiting_time_ms: %d ms\n", stats.max_waiting_time_ms); return 0; } } // namespace } // namespace test } // namespace webrtc int main(int argc, char* argv[]) { webrtc::test::RunTest(argc, argv); }