/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/rtp_rtcp/source/rtp_sender.h" #include // srand #include #include #include "webrtc/base/checks.h" #include "webrtc/base/logging.h" #include "webrtc/base/trace_event.h" #include "webrtc/call.h" #include "webrtc/call/rtc_event_log.h" #include "webrtc/modules/rtp_rtcp/include/rtp_cvo.h" #include "webrtc/modules/rtp_rtcp/source/byte_io.h" #include "webrtc/modules/rtp_rtcp/source/rtp_sender_audio.h" #include "webrtc/modules/rtp_rtcp/source/rtp_sender_video.h" #include "webrtc/modules/rtp_rtcp/source/time_util.h" #include "webrtc/system_wrappers/include/critical_section_wrapper.h" #include "webrtc/system_wrappers/include/tick_util.h" namespace webrtc { // Max in the RFC 3550 is 255 bytes, we limit it to be modulus 32 for SRTP. static const size_t kMaxPaddingLength = 224; static const int kSendSideDelayWindowMs = 1000; static const uint32_t kAbsSendTimeFraction = 18; namespace { const size_t kRtpHeaderLength = 12; const uint16_t kMaxInitRtpSeqNumber = 32767; // 2^15 -1. const char* FrameTypeToString(FrameType frame_type) { switch (frame_type) { case kEmptyFrame: return "empty"; case kAudioFrameSpeech: return "audio_speech"; case kAudioFrameCN: return "audio_cn"; case kVideoFrameKey: return "video_key"; case kVideoFrameDelta: return "video_delta"; } return ""; } // TODO(holmer): Merge this with the implementation in // remote_bitrate_estimator_abs_send_time.cc. uint32_t ConvertMsTo24Bits(int64_t time_ms) { uint32_t time_24_bits = static_cast( ((static_cast(time_ms) << kAbsSendTimeFraction) + 500) / 1000) & 0x00FFFFFF; return time_24_bits; } } // namespace RTPSender::BitrateAggregator::BitrateAggregator( BitrateStatisticsObserver* bitrate_callback) : callback_(bitrate_callback), total_bitrate_observer_(*this), retransmit_bitrate_observer_(*this), ssrc_(0) {} void RTPSender::BitrateAggregator::OnStatsUpdated() const { if (callback_) { callback_->Notify(total_bitrate_observer_.statistics(), retransmit_bitrate_observer_.statistics(), ssrc_); } } Bitrate::Observer* RTPSender::BitrateAggregator::total_bitrate_observer() { return &total_bitrate_observer_; } Bitrate::Observer* RTPSender::BitrateAggregator::retransmit_bitrate_observer() { return &retransmit_bitrate_observer_; } void RTPSender::BitrateAggregator::set_ssrc(uint32_t ssrc) { ssrc_ = ssrc; } RTPSender::BitrateAggregator::BitrateObserver::BitrateObserver( const BitrateAggregator& aggregator) : aggregator_(aggregator) {} // Implements Bitrate::Observer. void RTPSender::BitrateAggregator::BitrateObserver::BitrateUpdated( const BitrateStatistics& stats) { statistics_ = stats; aggregator_.OnStatsUpdated(); } const BitrateStatistics& RTPSender::BitrateAggregator::BitrateObserver::statistics() const { return statistics_; } RTPSender::RTPSender( bool audio, Clock* clock, Transport* transport, RtpAudioFeedback* audio_feedback, RtpPacketSender* paced_sender, TransportSequenceNumberAllocator* sequence_number_allocator, TransportFeedbackObserver* transport_feedback_observer, BitrateStatisticsObserver* bitrate_callback, FrameCountObserver* frame_count_observer, SendSideDelayObserver* send_side_delay_observer, RtcEventLog* event_log) : clock_(clock), // TODO(holmer): Remove this conversion when we remove the use of // TickTime. clock_delta_ms_(clock_->TimeInMilliseconds() - TickTime::MillisecondTimestamp()), random_(clock_->TimeInMicroseconds()), bitrates_(bitrate_callback), total_bitrate_sent_(clock, bitrates_.total_bitrate_observer()), audio_configured_(audio), audio_(audio ? new RTPSenderAudio(clock, this, audio_feedback) : nullptr), video_(audio ? nullptr : new RTPSenderVideo(clock, this)), paced_sender_(paced_sender), transport_sequence_number_allocator_(sequence_number_allocator), transport_feedback_observer_(transport_feedback_observer), last_capture_time_ms_sent_(0), transport_(transport), sending_media_(true), // Default to sending media. max_payload_length_(IP_PACKET_SIZE - 28), // Default is IP-v4/UDP. packet_over_head_(28), payload_type_(-1), payload_type_map_(), rtp_header_extension_map_(), transmission_time_offset_(0), absolute_send_time_(0), rotation_(kVideoRotation_0), cvo_mode_(kCVONone), transport_sequence_number_(0), // NACK. nack_byte_count_times_(), nack_byte_count_(), nack_bitrate_(clock, bitrates_.retransmit_bitrate_observer()), packet_history_(clock), // Statistics statistics_crit_(CriticalSectionWrapper::CreateCriticalSection()), rtp_stats_callback_(NULL), frame_count_observer_(frame_count_observer), send_side_delay_observer_(send_side_delay_observer), event_log_(event_log), // RTP variables start_timestamp_forced_(false), start_timestamp_(0), ssrc_db_(SSRCDatabase::GetSSRCDatabase()), remote_ssrc_(0), sequence_number_forced_(false), ssrc_forced_(false), timestamp_(0), capture_time_ms_(0), last_timestamp_time_ms_(0), media_has_been_sent_(false), last_packet_marker_bit_(false), csrcs_(), rtx_(kRtxOff), target_bitrate_critsect_(CriticalSectionWrapper::CreateCriticalSection()), target_bitrate_(0) { memset(nack_byte_count_times_, 0, sizeof(nack_byte_count_times_)); memset(nack_byte_count_, 0, sizeof(nack_byte_count_)); // We need to seed the random generator for BuildPaddingPacket() below. // TODO(holmer,tommi): Note that TimeInMilliseconds might return 0 on Mac // early on in the process. srand(static_cast(clock_->TimeInMilliseconds())); ssrc_ = ssrc_db_->CreateSSRC(); RTC_DCHECK(ssrc_ != 0); ssrc_rtx_ = ssrc_db_->CreateSSRC(); RTC_DCHECK(ssrc_rtx_ != 0); bitrates_.set_ssrc(ssrc_); // Random start, 16 bits. Can't be 0. sequence_number_rtx_ = random_.Rand(1, kMaxInitRtpSeqNumber); sequence_number_ = random_.Rand(1, kMaxInitRtpSeqNumber); } RTPSender::~RTPSender() { // TODO(tommi): Use a thread checker to ensure the object is created and // deleted on the same thread. At the moment this isn't possible due to // voe::ChannelOwner in voice engine. To reproduce, run: // voe_auto_test --automated --gtest_filter=*MixManyChannelsForStressOpus // TODO(tommi,holmer): We don't grab locks in the dtor before accessing member // variables but we grab them in all other methods. (what's the design?) // Start documenting what thread we're on in what method so that it's easier // to understand performance attributes and possibly remove locks. if (remote_ssrc_ != 0) { ssrc_db_->ReturnSSRC(remote_ssrc_); } ssrc_db_->ReturnSSRC(ssrc_); SSRCDatabase::ReturnSSRCDatabase(); while (!payload_type_map_.empty()) { std::map::iterator it = payload_type_map_.begin(); delete it->second; payload_type_map_.erase(it); } } void RTPSender::SetTargetBitrate(uint32_t bitrate) { CriticalSectionScoped cs(target_bitrate_critsect_.get()); target_bitrate_ = bitrate; } uint32_t RTPSender::GetTargetBitrate() { CriticalSectionScoped cs(target_bitrate_critsect_.get()); return target_bitrate_; } uint16_t RTPSender::ActualSendBitrateKbit() const { return (uint16_t)(total_bitrate_sent_.BitrateNow() / 1000); } uint32_t RTPSender::VideoBitrateSent() const { if (video_) { return video_->VideoBitrateSent(); } return 0; } uint32_t RTPSender::FecOverheadRate() const { if (video_) { return video_->FecOverheadRate(); } return 0; } uint32_t RTPSender::NackOverheadRate() const { return nack_bitrate_.BitrateLast(); } int32_t RTPSender::SetTransmissionTimeOffset(int32_t transmission_time_offset) { if (transmission_time_offset > (0x800000 - 1) || transmission_time_offset < -(0x800000 - 1)) { // Word24. return -1; } rtc::CritScope lock(&send_critsect_); transmission_time_offset_ = transmission_time_offset; return 0; } int32_t RTPSender::SetAbsoluteSendTime(uint32_t absolute_send_time) { if (absolute_send_time > 0xffffff) { // UWord24. return -1; } rtc::CritScope lock(&send_critsect_); absolute_send_time_ = absolute_send_time; return 0; } void RTPSender::SetVideoRotation(VideoRotation rotation) { rtc::CritScope lock(&send_critsect_); rotation_ = rotation; } int32_t RTPSender::SetTransportSequenceNumber(uint16_t sequence_number) { rtc::CritScope lock(&send_critsect_); transport_sequence_number_ = sequence_number; return 0; } int32_t RTPSender::RegisterRtpHeaderExtension(RTPExtensionType type, uint8_t id) { rtc::CritScope lock(&send_critsect_); if (type == kRtpExtensionVideoRotation) { cvo_mode_ = kCVOInactive; return rtp_header_extension_map_.RegisterInactive(type, id); } return rtp_header_extension_map_.Register(type, id); } bool RTPSender::IsRtpHeaderExtensionRegistered(RTPExtensionType type) { rtc::CritScope lock(&send_critsect_); return rtp_header_extension_map_.IsRegistered(type); } int32_t RTPSender::DeregisterRtpHeaderExtension(RTPExtensionType type) { rtc::CritScope lock(&send_critsect_); return rtp_header_extension_map_.Deregister(type); } size_t RTPSender::RtpHeaderExtensionTotalLength() const { rtc::CritScope lock(&send_critsect_); return rtp_header_extension_map_.GetTotalLengthInBytes(); } int32_t RTPSender::RegisterPayload( const char payload_name[RTP_PAYLOAD_NAME_SIZE], int8_t payload_number, uint32_t frequency, size_t channels, uint32_t rate) { assert(payload_name); rtc::CritScope lock(&send_critsect_); std::map::iterator it = payload_type_map_.find(payload_number); if (payload_type_map_.end() != it) { // We already use this payload type. RtpUtility::Payload* payload = it->second; assert(payload); // Check if it's the same as we already have. if (RtpUtility::StringCompare( payload->name, payload_name, RTP_PAYLOAD_NAME_SIZE - 1)) { if (audio_configured_ && payload->audio && payload->typeSpecific.Audio.frequency == frequency && (payload->typeSpecific.Audio.rate == rate || payload->typeSpecific.Audio.rate == 0 || rate == 0)) { payload->typeSpecific.Audio.rate = rate; // Ensure that we update the rate if new or old is zero. return 0; } if (!audio_configured_ && !payload->audio) { return 0; } } return -1; } int32_t ret_val = 0; RtpUtility::Payload* payload = nullptr; if (audio_configured_) { // TODO(mflodman): Change to CreateAudioPayload and make static. ret_val = audio_->RegisterAudioPayload(payload_name, payload_number, frequency, channels, rate, &payload); } else { payload = video_->CreateVideoPayload(payload_name, payload_number); } if (payload) { payload_type_map_[payload_number] = payload; } return ret_val; } int32_t RTPSender::DeRegisterSendPayload(int8_t payload_type) { rtc::CritScope lock(&send_critsect_); std::map::iterator it = payload_type_map_.find(payload_type); if (payload_type_map_.end() == it) { return -1; } RtpUtility::Payload* payload = it->second; delete payload; payload_type_map_.erase(it); return 0; } void RTPSender::SetSendPayloadType(int8_t payload_type) { rtc::CritScope lock(&send_critsect_); payload_type_ = payload_type; } int8_t RTPSender::SendPayloadType() const { rtc::CritScope lock(&send_critsect_); return payload_type_; } int RTPSender::SendPayloadFrequency() const { return audio_ != NULL ? audio_->AudioFrequency() : kVideoPayloadTypeFrequency; } int32_t RTPSender::SetMaxPayloadLength(size_t max_payload_length, uint16_t packet_over_head) { // Sanity check. RTC_DCHECK(max_payload_length >= 100 && max_payload_length <= IP_PACKET_SIZE) << "Invalid max payload length: " << max_payload_length; rtc::CritScope lock(&send_critsect_); max_payload_length_ = max_payload_length; packet_over_head_ = packet_over_head; return 0; } size_t RTPSender::MaxDataPayloadLength() const { int rtx; { rtc::CritScope lock(&send_critsect_); rtx = rtx_; } if (audio_configured_) { return max_payload_length_ - RTPHeaderLength(); } else { return max_payload_length_ - RTPHeaderLength() // RTP overhead. - video_->FECPacketOverhead() // FEC/ULP/RED overhead. - ((rtx) ? 2 : 0); // RTX overhead. } } size_t RTPSender::MaxPayloadLength() const { return max_payload_length_; } uint16_t RTPSender::PacketOverHead() const { return packet_over_head_; } void RTPSender::SetRtxStatus(int mode) { rtc::CritScope lock(&send_critsect_); rtx_ = mode; } int RTPSender::RtxStatus() const { rtc::CritScope lock(&send_critsect_); return rtx_; } void RTPSender::SetRtxSsrc(uint32_t ssrc) { rtc::CritScope lock(&send_critsect_); ssrc_rtx_ = ssrc; } uint32_t RTPSender::RtxSsrc() const { rtc::CritScope lock(&send_critsect_); return ssrc_rtx_; } void RTPSender::SetRtxPayloadType(int payload_type, int associated_payload_type) { rtc::CritScope lock(&send_critsect_); RTC_DCHECK_LE(payload_type, 127); RTC_DCHECK_LE(associated_payload_type, 127); if (payload_type < 0) { LOG(LS_ERROR) << "Invalid RTX payload type: " << payload_type; return; } rtx_payload_type_map_[associated_payload_type] = payload_type; } int32_t RTPSender::CheckPayloadType(int8_t payload_type, RtpVideoCodecTypes* video_type) { rtc::CritScope lock(&send_critsect_); if (payload_type < 0) { LOG(LS_ERROR) << "Invalid payload_type " << payload_type; return -1; } if (audio_configured_) { int8_t red_pl_type = -1; if (audio_->RED(&red_pl_type) == 0) { // We have configured RED. if (red_pl_type == payload_type) { // And it's a match... return 0; } } } if (payload_type_ == payload_type) { if (!audio_configured_) { *video_type = video_->VideoCodecType(); } return 0; } std::map::iterator it = payload_type_map_.find(payload_type); if (it == payload_type_map_.end()) { LOG(LS_WARNING) << "Payload type " << static_cast(payload_type) << " not registered."; return -1; } SetSendPayloadType(payload_type); RtpUtility::Payload* payload = it->second; assert(payload); if (!payload->audio && !audio_configured_) { video_->SetVideoCodecType(payload->typeSpecific.Video.videoCodecType); *video_type = payload->typeSpecific.Video.videoCodecType; } return 0; } RTPSenderInterface::CVOMode RTPSender::ActivateCVORtpHeaderExtension() { if (cvo_mode_ == kCVOInactive) { rtc::CritScope lock(&send_critsect_); if (rtp_header_extension_map_.SetActive(kRtpExtensionVideoRotation, true)) { cvo_mode_ = kCVOActivated; } } return cvo_mode_; } int32_t RTPSender::SendOutgoingData(FrameType frame_type, int8_t payload_type, uint32_t capture_timestamp, int64_t capture_time_ms, const uint8_t* payload_data, size_t payload_size, const RTPFragmentationHeader* fragmentation, const RTPVideoHeader* rtp_hdr) { uint32_t ssrc; { // Drop this packet if we're not sending media packets. rtc::CritScope lock(&send_critsect_); ssrc = ssrc_; if (!sending_media_) { return 0; } } RtpVideoCodecTypes video_type = kRtpVideoGeneric; if (CheckPayloadType(payload_type, &video_type) != 0) { LOG(LS_ERROR) << "Don't send data with unknown payload type: " << static_cast(payload_type) << "."; return -1; } int32_t ret_val; if (audio_configured_) { TRACE_EVENT_ASYNC_STEP1("webrtc", "Audio", capture_timestamp, "Send", "type", FrameTypeToString(frame_type)); assert(frame_type == kAudioFrameSpeech || frame_type == kAudioFrameCN || frame_type == kEmptyFrame); ret_val = audio_->SendAudio(frame_type, payload_type, capture_timestamp, payload_data, payload_size, fragmentation); } else { TRACE_EVENT_ASYNC_STEP1("webrtc", "Video", capture_time_ms, "Send", "type", FrameTypeToString(frame_type)); assert(frame_type != kAudioFrameSpeech && frame_type != kAudioFrameCN); if (frame_type == kEmptyFrame) return 0; ret_val = video_->SendVideo(video_type, frame_type, payload_type, capture_timestamp, capture_time_ms, payload_data, payload_size, fragmentation, rtp_hdr); } CriticalSectionScoped cs(statistics_crit_.get()); // Note: This is currently only counting for video. if (frame_type == kVideoFrameKey) { ++frame_counts_.key_frames; } else if (frame_type == kVideoFrameDelta) { ++frame_counts_.delta_frames; } if (frame_count_observer_) { frame_count_observer_->FrameCountUpdated(frame_counts_, ssrc); } return ret_val; } size_t RTPSender::TrySendRedundantPayloads(size_t bytes_to_send) { { rtc::CritScope lock(&send_critsect_); if ((rtx_ & kRtxRedundantPayloads) == 0) return 0; } uint8_t buffer[IP_PACKET_SIZE]; int bytes_left = static_cast(bytes_to_send); while (bytes_left > 0) { size_t length = bytes_left; int64_t capture_time_ms; if (!packet_history_.GetBestFittingPacket(buffer, &length, &capture_time_ms)) { break; } if (!PrepareAndSendPacket(buffer, length, capture_time_ms, true, false)) break; RtpUtility::RtpHeaderParser rtp_parser(buffer, length); RTPHeader rtp_header; rtp_parser.Parse(&rtp_header); bytes_left -= static_cast(length - rtp_header.headerLength); } return bytes_to_send - bytes_left; } void RTPSender::BuildPaddingPacket(uint8_t* packet, size_t header_length, size_t padding_length) { packet[0] |= 0x20; // Set padding bit. int32_t* data = reinterpret_cast(&(packet[header_length])); // Fill data buffer with random data. for (size_t j = 0; j < (padding_length >> 2); ++j) { data[j] = rand(); // NOLINT } // Set number of padding bytes in the last byte of the packet. packet[header_length + padding_length - 1] = static_cast(padding_length); } size_t RTPSender::SendPadData(size_t bytes, bool timestamp_provided, uint32_t timestamp, int64_t capture_time_ms) { // Always send full padding packets. This is accounted for by the // RtpPacketSender, // which will make sure we don't send too much padding even if a single packet // is larger than requested. size_t padding_bytes_in_packet = std::min(MaxDataPayloadLength(), kMaxPaddingLength); size_t bytes_sent = 0; bool using_transport_seq = rtp_header_extension_map_.IsRegistered( kRtpExtensionTransportSequenceNumber) && transport_sequence_number_allocator_; for (; bytes > 0; bytes -= padding_bytes_in_packet) { if (bytes < padding_bytes_in_packet) bytes = padding_bytes_in_packet; uint32_t ssrc; uint16_t sequence_number; int payload_type; bool over_rtx; { rtc::CritScope lock(&send_critsect_); if (!timestamp_provided) { timestamp = timestamp_; capture_time_ms = capture_time_ms_; } if (rtx_ == kRtxOff) { // Without RTX we can't send padding in the middle of frames. if (!last_packet_marker_bit_) return 0; ssrc = ssrc_; sequence_number = sequence_number_; ++sequence_number_; payload_type = payload_type_; over_rtx = false; } else { // Without abs-send-time or transport sequence number a media packet // must be sent before padding so that the timestamps used for // estimation are correct. if (!media_has_been_sent_ && !(rtp_header_extension_map_.IsRegistered( kRtpExtensionAbsoluteSendTime) || using_transport_seq)) { return 0; } // Only change change the timestamp of padding packets sent over RTX. // Padding only packets over RTP has to be sent as part of a media // frame (and therefore the same timestamp). if (last_timestamp_time_ms_ > 0) { timestamp += (clock_->TimeInMilliseconds() - last_timestamp_time_ms_) * 90; capture_time_ms += (clock_->TimeInMilliseconds() - last_timestamp_time_ms_); } ssrc = ssrc_rtx_; sequence_number = sequence_number_rtx_; ++sequence_number_rtx_; payload_type = rtx_payload_type_map_.begin()->second; over_rtx = true; } } uint8_t padding_packet[IP_PACKET_SIZE]; size_t header_length = CreateRtpHeader(padding_packet, payload_type, ssrc, false, timestamp, sequence_number, std::vector()); BuildPaddingPacket(padding_packet, header_length, padding_bytes_in_packet); size_t length = padding_bytes_in_packet + header_length; int64_t now_ms = clock_->TimeInMilliseconds(); RtpUtility::RtpHeaderParser rtp_parser(padding_packet, length); RTPHeader rtp_header; rtp_parser.Parse(&rtp_header); if (capture_time_ms > 0) { UpdateTransmissionTimeOffset( padding_packet, length, rtp_header, now_ms - capture_time_ms); } UpdateAbsoluteSendTime(padding_packet, length, rtp_header, now_ms); PacketOptions options; if (using_transport_seq) { options.packet_id = UpdateTransportSequenceNumber(padding_packet, length, rtp_header); } if (using_transport_seq && transport_feedback_observer_) { transport_feedback_observer_->AddPacket(options.packet_id, length, true); } if (!SendPacketToNetwork(padding_packet, length, options)) break; bytes_sent += padding_bytes_in_packet; UpdateRtpStats(padding_packet, length, rtp_header, over_rtx, false); } return bytes_sent; } void RTPSender::SetStorePacketsStatus(bool enable, uint16_t number_to_store) { packet_history_.SetStorePacketsStatus(enable, number_to_store); } bool RTPSender::StorePackets() const { return packet_history_.StorePackets(); } int32_t RTPSender::ReSendPacket(uint16_t packet_id, int64_t min_resend_time) { size_t length = IP_PACKET_SIZE; uint8_t data_buffer[IP_PACKET_SIZE]; int64_t capture_time_ms; if (!packet_history_.GetPacketAndSetSendTime(packet_id, min_resend_time, true, data_buffer, &length, &capture_time_ms)) { // Packet not found. return 0; } if (paced_sender_) { RtpUtility::RtpHeaderParser rtp_parser(data_buffer, length); RTPHeader header; if (!rtp_parser.Parse(&header)) { assert(false); return -1; } // Convert from TickTime to Clock since capture_time_ms is based on // TickTime. int64_t corrected_capture_tims_ms = capture_time_ms + clock_delta_ms_; paced_sender_->InsertPacket( RtpPacketSender::kNormalPriority, header.ssrc, header.sequenceNumber, corrected_capture_tims_ms, length - header.headerLength, true); return length; } int rtx = kRtxOff; { rtc::CritScope lock(&send_critsect_); rtx = rtx_; } if (!PrepareAndSendPacket(data_buffer, length, capture_time_ms, (rtx & kRtxRetransmitted) > 0, true)) { return -1; } return static_cast(length); } bool RTPSender::SendPacketToNetwork(const uint8_t* packet, size_t size, const PacketOptions& options) { int bytes_sent = -1; if (transport_) { bytes_sent = transport_->SendRtp(packet, size, options) ? static_cast(size) : -1; if (event_log_ && bytes_sent > 0) { event_log_->LogRtpHeader(kOutgoingPacket, MediaType::ANY, packet, size); } } TRACE_EVENT_INSTANT2(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "RTPSender::SendPacketToNetwork", "size", size, "sent", bytes_sent); // TODO(pwestin): Add a separate bitrate for sent bitrate after pacer. if (bytes_sent <= 0) { LOG(LS_WARNING) << "Transport failed to send packet"; return false; } return true; } int RTPSender::SelectiveRetransmissions() const { if (!video_) return -1; return video_->SelectiveRetransmissions(); } int RTPSender::SetSelectiveRetransmissions(uint8_t settings) { if (!video_) return -1; video_->SetSelectiveRetransmissions(settings); return 0; } void RTPSender::OnReceivedNACK(const std::list& nack_sequence_numbers, int64_t avg_rtt) { TRACE_EVENT2(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "RTPSender::OnReceivedNACK", "num_seqnum", nack_sequence_numbers.size(), "avg_rtt", avg_rtt); const int64_t now = clock_->TimeInMilliseconds(); uint32_t bytes_re_sent = 0; uint32_t target_bitrate = GetTargetBitrate(); // Enough bandwidth to send NACK? if (!ProcessNACKBitRate(now)) { LOG(LS_INFO) << "NACK bitrate reached. Skip sending NACK response. Target " << target_bitrate; return; } for (std::list::const_iterator it = nack_sequence_numbers.begin(); it != nack_sequence_numbers.end(); ++it) { const int32_t bytes_sent = ReSendPacket(*it, 5 + avg_rtt); if (bytes_sent > 0) { bytes_re_sent += bytes_sent; } else if (bytes_sent == 0) { // The packet has previously been resent. // Try resending next packet in the list. continue; } else { // Failed to send one Sequence number. Give up the rest in this nack. LOG(LS_WARNING) << "Failed resending RTP packet " << *it << ", Discard rest of packets"; break; } // Delay bandwidth estimate (RTT * BW). if (target_bitrate != 0 && avg_rtt) { // kbits/s * ms = bits => bits/8 = bytes size_t target_bytes = (static_cast(target_bitrate / 1000) * avg_rtt) >> 3; if (bytes_re_sent > target_bytes) { break; // Ignore the rest of the packets in the list. } } } if (bytes_re_sent > 0) { UpdateNACKBitRate(bytes_re_sent, now); } } bool RTPSender::ProcessNACKBitRate(uint32_t now) { uint32_t num = 0; size_t byte_count = 0; const uint32_t kAvgIntervalMs = 1000; uint32_t target_bitrate = GetTargetBitrate(); rtc::CritScope lock(&send_critsect_); if (target_bitrate == 0) { return true; } for (num = 0; num < NACK_BYTECOUNT_SIZE; ++num) { if ((now - nack_byte_count_times_[num]) > kAvgIntervalMs) { // Don't use data older than 1sec. break; } else { byte_count += nack_byte_count_[num]; } } uint32_t time_interval = kAvgIntervalMs; if (num == NACK_BYTECOUNT_SIZE) { // More than NACK_BYTECOUNT_SIZE nack messages has been received // during the last msg_interval. if (nack_byte_count_times_[num - 1] <= now) { time_interval = now - nack_byte_count_times_[num - 1]; } } return (byte_count * 8) < (target_bitrate / 1000 * time_interval); } void RTPSender::UpdateNACKBitRate(uint32_t bytes, int64_t now) { rtc::CritScope lock(&send_critsect_); if (bytes == 0) return; nack_bitrate_.Update(bytes); // Save bitrate statistics. // Shift all but first time. for (int i = NACK_BYTECOUNT_SIZE - 2; i >= 0; i--) { nack_byte_count_[i + 1] = nack_byte_count_[i]; nack_byte_count_times_[i + 1] = nack_byte_count_times_[i]; } nack_byte_count_[0] = bytes; nack_byte_count_times_[0] = now; } // Called from pacer when we can send the packet. bool RTPSender::TimeToSendPacket(uint16_t sequence_number, int64_t capture_time_ms, bool retransmission) { size_t length = IP_PACKET_SIZE; uint8_t data_buffer[IP_PACKET_SIZE]; int64_t stored_time_ms; if (!packet_history_.GetPacketAndSetSendTime(sequence_number, 0, retransmission, data_buffer, &length, &stored_time_ms)) { // Packet cannot be found. Allow sending to continue. return true; } if (!retransmission && capture_time_ms > 0) { UpdateDelayStatistics(capture_time_ms, clock_->TimeInMilliseconds()); } int rtx; { rtc::CritScope lock(&send_critsect_); rtx = rtx_; } return PrepareAndSendPacket(data_buffer, length, capture_time_ms, retransmission && (rtx & kRtxRetransmitted) > 0, retransmission); } bool RTPSender::PrepareAndSendPacket(uint8_t* buffer, size_t length, int64_t capture_time_ms, bool send_over_rtx, bool is_retransmit) { uint8_t* buffer_to_send_ptr = buffer; RtpUtility::RtpHeaderParser rtp_parser(buffer, length); RTPHeader rtp_header; rtp_parser.Parse(&rtp_header); if (!is_retransmit && rtp_header.markerBit) { TRACE_EVENT_ASYNC_END0(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "PacedSend", capture_time_ms); } TRACE_EVENT_INSTANT2( TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "PrepareAndSendPacket", "timestamp", rtp_header.timestamp, "seqnum", rtp_header.sequenceNumber); uint8_t data_buffer_rtx[IP_PACKET_SIZE]; if (send_over_rtx) { BuildRtxPacket(buffer, &length, data_buffer_rtx); buffer_to_send_ptr = data_buffer_rtx; } int64_t now_ms = clock_->TimeInMilliseconds(); int64_t diff_ms = now_ms - capture_time_ms; UpdateTransmissionTimeOffset(buffer_to_send_ptr, length, rtp_header, diff_ms); UpdateAbsoluteSendTime(buffer_to_send_ptr, length, rtp_header, now_ms); // TODO(sprang): Potentially too much overhead in IsRegistered()? bool using_transport_seq = rtp_header_extension_map_.IsRegistered( kRtpExtensionTransportSequenceNumber) && transport_sequence_number_allocator_; PacketOptions options; if (using_transport_seq) { options.packet_id = UpdateTransportSequenceNumber(buffer_to_send_ptr, length, rtp_header); } if (using_transport_seq && transport_feedback_observer_) { transport_feedback_observer_->AddPacket(options.packet_id, length, true); } bool ret = SendPacketToNetwork(buffer_to_send_ptr, length, options); if (ret) { rtc::CritScope lock(&send_critsect_); media_has_been_sent_ = true; } UpdateRtpStats(buffer_to_send_ptr, length, rtp_header, send_over_rtx, is_retransmit); return ret; } void RTPSender::UpdateRtpStats(const uint8_t* buffer, size_t packet_length, const RTPHeader& header, bool is_rtx, bool is_retransmit) { StreamDataCounters* counters; // Get ssrc before taking statistics_crit_ to avoid possible deadlock. uint32_t ssrc = is_rtx ? RtxSsrc() : SSRC(); CriticalSectionScoped lock(statistics_crit_.get()); if (is_rtx) { counters = &rtx_rtp_stats_; } else { counters = &rtp_stats_; } total_bitrate_sent_.Update(packet_length); if (counters->first_packet_time_ms == -1) { counters->first_packet_time_ms = clock_->TimeInMilliseconds(); } if (IsFecPacket(buffer, header)) { counters->fec.AddPacket(packet_length, header); } if (is_retransmit) { counters->retransmitted.AddPacket(packet_length, header); } counters->transmitted.AddPacket(packet_length, header); if (rtp_stats_callback_) { rtp_stats_callback_->DataCountersUpdated(*counters, ssrc); } } bool RTPSender::IsFecPacket(const uint8_t* buffer, const RTPHeader& header) const { if (!video_) { return false; } bool fec_enabled; uint8_t pt_red; uint8_t pt_fec; video_->GenericFECStatus(&fec_enabled, &pt_red, &pt_fec); return fec_enabled && header.payloadType == pt_red && buffer[header.headerLength] == pt_fec; } size_t RTPSender::TimeToSendPadding(size_t bytes) { if (audio_configured_ || bytes == 0) return 0; { rtc::CritScope lock(&send_critsect_); if (!sending_media_) return 0; } size_t bytes_sent = TrySendRedundantPayloads(bytes); if (bytes_sent < bytes) bytes_sent += SendPadData(bytes - bytes_sent, false, 0, 0); return bytes_sent; } // TODO(pwestin): send in the RtpHeaderParser to avoid parsing it again. int32_t RTPSender::SendToNetwork(uint8_t* buffer, size_t payload_length, size_t rtp_header_length, int64_t capture_time_ms, StorageType storage, RtpPacketSender::Priority priority) { size_t length = payload_length + rtp_header_length; RtpUtility::RtpHeaderParser rtp_parser(buffer, length); RTPHeader rtp_header; rtp_parser.Parse(&rtp_header); int64_t now_ms = clock_->TimeInMilliseconds(); // |capture_time_ms| <= 0 is considered invalid. // TODO(holmer): This should be changed all over Video Engine so that negative // time is consider invalid, while 0 is considered a valid time. if (capture_time_ms > 0) { UpdateTransmissionTimeOffset(buffer, length, rtp_header, now_ms - capture_time_ms); } UpdateAbsoluteSendTime(buffer, length, rtp_header, now_ms); // Used for NACK and to spread out the transmission of packets. if (packet_history_.PutRTPPacket(buffer, length, capture_time_ms, storage) != 0) { return -1; } if (paced_sender_) { // Correct offset between implementations of millisecond time stamps in // TickTime and Clock. int64_t corrected_time_ms = capture_time_ms + clock_delta_ms_; paced_sender_->InsertPacket(priority, rtp_header.ssrc, rtp_header.sequenceNumber, corrected_time_ms, payload_length, false); if (last_capture_time_ms_sent_ == 0 || corrected_time_ms > last_capture_time_ms_sent_) { last_capture_time_ms_sent_ = corrected_time_ms; TRACE_EVENT_ASYNC_BEGIN1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "PacedSend", corrected_time_ms, "capture_time_ms", corrected_time_ms); } return 0; } if (capture_time_ms > 0) { UpdateDelayStatistics(capture_time_ms, now_ms); } // TODO(sprang): Potentially too much overhead in IsRegistered()? bool using_transport_seq = rtp_header_extension_map_.IsRegistered( kRtpExtensionTransportSequenceNumber) && transport_sequence_number_allocator_; PacketOptions options; if (using_transport_seq) { options.packet_id = UpdateTransportSequenceNumber(buffer, length, rtp_header); if (transport_feedback_observer_) { transport_feedback_observer_->AddPacket(options.packet_id, length, true); } } bool sent = SendPacketToNetwork(buffer, length, options); // Mark the packet as sent in the history even if send failed. Dropping a // packet here should be treated as any other packet drop so we should be // ready for a retransmission. packet_history_.SetSent(rtp_header.sequenceNumber); if (!sent) return -1; { rtc::CritScope lock(&send_critsect_); media_has_been_sent_ = true; } UpdateRtpStats(buffer, length, rtp_header, false, false); return 0; } void RTPSender::UpdateDelayStatistics(int64_t capture_time_ms, int64_t now_ms) { if (!send_side_delay_observer_) return; uint32_t ssrc; int avg_delay_ms = 0; int max_delay_ms = 0; { rtc::CritScope lock(&send_critsect_); ssrc = ssrc_; } { CriticalSectionScoped cs(statistics_crit_.get()); // TODO(holmer): Compute this iteratively instead. send_delays_[now_ms] = now_ms - capture_time_ms; send_delays_.erase(send_delays_.begin(), send_delays_.lower_bound(now_ms - kSendSideDelayWindowMs)); int num_delays = 0; for (auto it = send_delays_.upper_bound(now_ms - kSendSideDelayWindowMs); it != send_delays_.end(); ++it) { max_delay_ms = std::max(max_delay_ms, it->second); avg_delay_ms += it->second; ++num_delays; } if (num_delays == 0) return; avg_delay_ms = (avg_delay_ms + num_delays / 2) / num_delays; } send_side_delay_observer_->SendSideDelayUpdated(avg_delay_ms, max_delay_ms, ssrc); } void RTPSender::ProcessBitrate() { rtc::CritScope lock(&send_critsect_); total_bitrate_sent_.Process(); nack_bitrate_.Process(); if (audio_configured_) { return; } video_->ProcessBitrate(); } size_t RTPSender::RTPHeaderLength() const { rtc::CritScope lock(&send_critsect_); size_t rtp_header_length = kRtpHeaderLength; rtp_header_length += sizeof(uint32_t) * csrcs_.size(); rtp_header_length += RtpHeaderExtensionTotalLength(); return rtp_header_length; } uint16_t RTPSender::AllocateSequenceNumber(uint16_t packets_to_send) { rtc::CritScope lock(&send_critsect_); uint16_t first_allocated_sequence_number = sequence_number_; sequence_number_ += packets_to_send; return first_allocated_sequence_number; } void RTPSender::GetDataCounters(StreamDataCounters* rtp_stats, StreamDataCounters* rtx_stats) const { CriticalSectionScoped lock(statistics_crit_.get()); *rtp_stats = rtp_stats_; *rtx_stats = rtx_rtp_stats_; } size_t RTPSender::CreateRtpHeader(uint8_t* header, int8_t payload_type, uint32_t ssrc, bool marker_bit, uint32_t timestamp, uint16_t sequence_number, const std::vector& csrcs) const { header[0] = 0x80; // version 2. header[1] = static_cast(payload_type); if (marker_bit) { header[1] |= kRtpMarkerBitMask; // Marker bit is set. } ByteWriter::WriteBigEndian(header + 2, sequence_number); ByteWriter::WriteBigEndian(header + 4, timestamp); ByteWriter::WriteBigEndian(header + 8, ssrc); int32_t rtp_header_length = kRtpHeaderLength; if (csrcs.size() > 0) { uint8_t* ptr = &header[rtp_header_length]; for (size_t i = 0; i < csrcs.size(); ++i) { ByteWriter::WriteBigEndian(ptr, csrcs[i]); ptr += 4; } header[0] = (header[0] & 0xf0) | csrcs.size(); // Update length of header. rtp_header_length += sizeof(uint32_t) * csrcs.size(); } uint16_t len = BuildRTPHeaderExtension(header + rtp_header_length, marker_bit); if (len > 0) { header[0] |= 0x10; // Set extension bit. rtp_header_length += len; } return rtp_header_length; } int32_t RTPSender::BuildRTPheader(uint8_t* data_buffer, int8_t payload_type, bool marker_bit, uint32_t capture_timestamp, int64_t capture_time_ms, bool timestamp_provided, bool inc_sequence_number) { assert(payload_type >= 0); rtc::CritScope lock(&send_critsect_); if (timestamp_provided) { timestamp_ = start_timestamp_ + capture_timestamp; } else { // Make a unique time stamp. // We can't inc by the actual time, since then we increase the risk of back // timing. timestamp_++; } last_timestamp_time_ms_ = clock_->TimeInMilliseconds(); uint32_t sequence_number = sequence_number_++; capture_time_ms_ = capture_time_ms; last_packet_marker_bit_ = marker_bit; return CreateRtpHeader(data_buffer, payload_type, ssrc_, marker_bit, timestamp_, sequence_number, csrcs_); } uint16_t RTPSender::BuildRTPHeaderExtension(uint8_t* data_buffer, bool marker_bit) const { if (rtp_header_extension_map_.Size() <= 0) { return 0; } // RTP header extension, RFC 3550. // 0 1 2 3 // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // | defined by profile | length | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // | header extension | // | .... | // const uint32_t kPosLength = 2; const uint32_t kHeaderLength = kRtpOneByteHeaderLength; // Add extension ID (0xBEDE). ByteWriter::WriteBigEndian(data_buffer, kRtpOneByteHeaderExtensionId); // Add extensions. uint16_t total_block_length = 0; RTPExtensionType type = rtp_header_extension_map_.First(); while (type != kRtpExtensionNone) { uint8_t block_length = 0; uint8_t* extension_data = &data_buffer[kHeaderLength + total_block_length]; switch (type) { case kRtpExtensionTransmissionTimeOffset: block_length = BuildTransmissionTimeOffsetExtension(extension_data); break; case kRtpExtensionAudioLevel: block_length = BuildAudioLevelExtension(extension_data); break; case kRtpExtensionAbsoluteSendTime: block_length = BuildAbsoluteSendTimeExtension(extension_data); break; case kRtpExtensionVideoRotation: block_length = BuildVideoRotationExtension(extension_data); break; case kRtpExtensionTransportSequenceNumber: block_length = BuildTransportSequenceNumberExtension( extension_data, transport_sequence_number_); break; default: assert(false); } total_block_length += block_length; type = rtp_header_extension_map_.Next(type); } if (total_block_length == 0) { // No extension added. return 0; } // Add padding elements until we've filled a 32 bit block. size_t padding_bytes = RtpUtility::Word32Align(total_block_length) - total_block_length; if (padding_bytes > 0) { memset(&data_buffer[kHeaderLength + total_block_length], 0, padding_bytes); total_block_length += padding_bytes; } // Set header length (in number of Word32, header excluded). ByteWriter::WriteBigEndian(data_buffer + kPosLength, total_block_length / 4); // Total added length. return kHeaderLength + total_block_length; } uint8_t RTPSender::BuildTransmissionTimeOffsetExtension( uint8_t* data_buffer) const { // From RFC 5450: Transmission Time Offsets in RTP Streams. // // The transmission time is signaled to the receiver in-band using the // general mechanism for RTP header extensions [RFC5285]. The payload // of this extension (the transmitted value) is a 24-bit signed integer. // When added to the RTP timestamp of the packet, it represents the // "effective" RTP transmission time of the packet, on the RTP // timescale. // // The form of the transmission offset extension block: // // 0 1 2 3 // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // | ID | len=2 | transmission offset | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // Get id defined by user. uint8_t id; if (rtp_header_extension_map_.GetId(kRtpExtensionTransmissionTimeOffset, &id) != 0) { // Not registered. return 0; } size_t pos = 0; const uint8_t len = 2; data_buffer[pos++] = (id << 4) + len; ByteWriter::WriteBigEndian(data_buffer + pos, transmission_time_offset_); pos += 3; assert(pos == kTransmissionTimeOffsetLength); return kTransmissionTimeOffsetLength; } uint8_t RTPSender::BuildAudioLevelExtension(uint8_t* data_buffer) const { // An RTP Header Extension for Client-to-Mixer Audio Level Indication // // https://datatracker.ietf.org/doc/draft-lennox-avt-rtp-audio-level-exthdr/ // // The form of the audio level extension block: // // 0 1 // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // | ID | len=0 |V| level | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // // Get id defined by user. uint8_t id; if (rtp_header_extension_map_.GetId(kRtpExtensionAudioLevel, &id) != 0) { // Not registered. return 0; } size_t pos = 0; const uint8_t len = 0; data_buffer[pos++] = (id << 4) + len; data_buffer[pos++] = (1 << 7) + 0; // Voice, 0 dBov. assert(pos == kAudioLevelLength); return kAudioLevelLength; } uint8_t RTPSender::BuildAbsoluteSendTimeExtension(uint8_t* data_buffer) const { // Absolute send time in RTP streams. // // The absolute send time is signaled to the receiver in-band using the // general mechanism for RTP header extensions [RFC5285]. The payload // of this extension (the transmitted value) is a 24-bit unsigned integer // containing the sender's current time in seconds as a fixed point number // with 18 bits fractional part. // // The form of the absolute send time extension block: // // 0 1 2 3 // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // | ID | len=2 | absolute send time | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // Get id defined by user. uint8_t id; if (rtp_header_extension_map_.GetId(kRtpExtensionAbsoluteSendTime, &id) != 0) { // Not registered. return 0; } size_t pos = 0; const uint8_t len = 2; data_buffer[pos++] = (id << 4) + len; ByteWriter::WriteBigEndian(data_buffer + pos, absolute_send_time_); pos += 3; assert(pos == kAbsoluteSendTimeLength); return kAbsoluteSendTimeLength; } uint8_t RTPSender::BuildVideoRotationExtension(uint8_t* data_buffer) const { // Coordination of Video Orientation in RTP streams. // // Coordination of Video Orientation consists in signaling of the current // orientation of the image captured on the sender side to the receiver for // appropriate rendering and displaying. // // 0 1 // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // | ID | len=0 |0 0 0 0 C F R R| // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // // Get id defined by user. uint8_t id; if (rtp_header_extension_map_.GetId(kRtpExtensionVideoRotation, &id) != 0) { // Not registered. return 0; } size_t pos = 0; const uint8_t len = 0; data_buffer[pos++] = (id << 4) + len; data_buffer[pos++] = ConvertVideoRotationToCVOByte(rotation_); assert(pos == kVideoRotationLength); return kVideoRotationLength; } uint8_t RTPSender::BuildTransportSequenceNumberExtension( uint8_t* data_buffer, uint16_t sequence_number) const { // 0 1 2 // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // | ID | L=1 |transport wide sequence number | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // Get id defined by user. uint8_t id; if (rtp_header_extension_map_.GetId(kRtpExtensionTransportSequenceNumber, &id) != 0) { // Not registered. return 0; } size_t pos = 0; const uint8_t len = 1; data_buffer[pos++] = (id << 4) + len; ByteWriter::WriteBigEndian(data_buffer + pos, sequence_number); pos += 2; assert(pos == kTransportSequenceNumberLength); return kTransportSequenceNumberLength; } bool RTPSender::FindHeaderExtensionPosition(RTPExtensionType type, const uint8_t* rtp_packet, size_t rtp_packet_length, const RTPHeader& rtp_header, size_t* position) const { // Get length until start of header extension block. int extension_block_pos = rtp_header_extension_map_.GetLengthUntilBlockStartInBytes(type); if (extension_block_pos < 0) { LOG(LS_WARNING) << "Failed to find extension position for " << type << " as it is not registered."; return false; } HeaderExtension header_extension(type); size_t extension_pos = kRtpHeaderLength + rtp_header.numCSRCs * sizeof(uint32_t); size_t block_pos = extension_pos + extension_block_pos; if (rtp_packet_length < block_pos + header_extension.length || rtp_header.headerLength < block_pos + header_extension.length) { LOG(LS_WARNING) << "Failed to find extension position for " << type << " as the length is invalid."; return false; } // Verify that header contains extension. if (!(rtp_packet[extension_pos] == 0xBE && rtp_packet[extension_pos + 1] == 0xDE)) { LOG(LS_WARNING) << "Failed to find extension position for " << type << "as hdr extension not found."; return false; } *position = block_pos; return true; } RTPSender::ExtensionStatus RTPSender::VerifyExtension( RTPExtensionType extension_type, uint8_t* rtp_packet, size_t rtp_packet_length, const RTPHeader& rtp_header, size_t extension_length_bytes, size_t* extension_offset) const { // Get id. uint8_t id = 0; if (rtp_header_extension_map_.GetId(extension_type, &id) != 0) return ExtensionStatus::kNotRegistered; size_t block_pos = 0; if (!FindHeaderExtensionPosition(extension_type, rtp_packet, rtp_packet_length, rtp_header, &block_pos)) return ExtensionStatus::kError; // Verify first byte in block. const uint8_t first_block_byte = (id << 4) + (extension_length_bytes - 2); if (rtp_packet[block_pos] != first_block_byte) return ExtensionStatus::kError; *extension_offset = block_pos; return ExtensionStatus::kOk; } void RTPSender::UpdateTransmissionTimeOffset(uint8_t* rtp_packet, size_t rtp_packet_length, const RTPHeader& rtp_header, int64_t time_diff_ms) const { size_t offset; rtc::CritScope lock(&send_critsect_); switch (VerifyExtension(kRtpExtensionTransmissionTimeOffset, rtp_packet, rtp_packet_length, rtp_header, kTransmissionTimeOffsetLength, &offset)) { case ExtensionStatus::kNotRegistered: return; case ExtensionStatus::kError: LOG(LS_WARNING) << "Failed to update transmission time offset."; return; case ExtensionStatus::kOk: break; default: RTC_NOTREACHED(); } // Update transmission offset field (converting to a 90 kHz timestamp). ByteWriter::WriteBigEndian(rtp_packet + offset + 1, time_diff_ms * 90); // RTP timestamp. } bool RTPSender::UpdateAudioLevel(uint8_t* rtp_packet, size_t rtp_packet_length, const RTPHeader& rtp_header, bool is_voiced, uint8_t dBov) const { size_t offset; rtc::CritScope lock(&send_critsect_); switch (VerifyExtension(kRtpExtensionAudioLevel, rtp_packet, rtp_packet_length, rtp_header, kAudioLevelLength, &offset)) { case ExtensionStatus::kNotRegistered: return false; case ExtensionStatus::kError: LOG(LS_WARNING) << "Failed to update audio level."; return false; case ExtensionStatus::kOk: break; default: RTC_NOTREACHED(); } rtp_packet[offset + 1] = (is_voiced ? 0x80 : 0x00) + (dBov & 0x7f); return true; } bool RTPSender::UpdateVideoRotation(uint8_t* rtp_packet, size_t rtp_packet_length, const RTPHeader& rtp_header, VideoRotation rotation) const { size_t offset; rtc::CritScope lock(&send_critsect_); switch (VerifyExtension(kRtpExtensionVideoRotation, rtp_packet, rtp_packet_length, rtp_header, kVideoRotationLength, &offset)) { case ExtensionStatus::kNotRegistered: return false; case ExtensionStatus::kError: LOG(LS_WARNING) << "Failed to update CVO."; return false; case ExtensionStatus::kOk: break; default: RTC_NOTREACHED(); } rtp_packet[offset + 1] = ConvertVideoRotationToCVOByte(rotation); return true; } void RTPSender::UpdateAbsoluteSendTime(uint8_t* rtp_packet, size_t rtp_packet_length, const RTPHeader& rtp_header, int64_t now_ms) const { size_t offset; rtc::CritScope lock(&send_critsect_); switch (VerifyExtension(kRtpExtensionAbsoluteSendTime, rtp_packet, rtp_packet_length, rtp_header, kAbsoluteSendTimeLength, &offset)) { case ExtensionStatus::kNotRegistered: return; case ExtensionStatus::kError: LOG(LS_WARNING) << "Failed to update absolute send time"; return; case ExtensionStatus::kOk: break; default: RTC_NOTREACHED(); } // Update absolute send time field (convert ms to 24-bit unsigned with 18 bit // fractional part). ByteWriter::WriteBigEndian(rtp_packet + offset + 1, ConvertMsTo24Bits(now_ms)); } uint16_t RTPSender::UpdateTransportSequenceNumber( uint8_t* rtp_packet, size_t rtp_packet_length, const RTPHeader& rtp_header) const { size_t offset; rtc::CritScope lock(&send_critsect_); switch (VerifyExtension(kRtpExtensionTransportSequenceNumber, rtp_packet, rtp_packet_length, rtp_header, kTransportSequenceNumberLength, &offset)) { case ExtensionStatus::kNotRegistered: return 0; case ExtensionStatus::kError: LOG(LS_WARNING) << "Failed to update transport sequence number"; return 0; case ExtensionStatus::kOk: break; default: RTC_NOTREACHED(); } uint16_t seq = transport_sequence_number_allocator_->AllocateSequenceNumber(); BuildTransportSequenceNumberExtension(rtp_packet + offset, seq); return seq; } void RTPSender::SetSendingStatus(bool enabled) { if (enabled) { uint32_t frequency_hz = SendPayloadFrequency(); uint32_t RTPtime = CurrentRtp(*clock_, frequency_hz); // Will be ignored if it's already configured via API. SetStartTimestamp(RTPtime, false); } else { rtc::CritScope lock(&send_critsect_); if (!ssrc_forced_) { // Generate a new SSRC. ssrc_db_->ReturnSSRC(ssrc_); ssrc_ = ssrc_db_->CreateSSRC(); RTC_DCHECK(ssrc_ != 0); bitrates_.set_ssrc(ssrc_); } // Don't initialize seq number if SSRC passed externally. if (!sequence_number_forced_ && !ssrc_forced_) { // Generate a new sequence number. sequence_number_ = random_.Rand(1, kMaxInitRtpSeqNumber); } } } void RTPSender::SetSendingMediaStatus(bool enabled) { rtc::CritScope lock(&send_critsect_); sending_media_ = enabled; } bool RTPSender::SendingMedia() const { rtc::CritScope lock(&send_critsect_); return sending_media_; } uint32_t RTPSender::Timestamp() const { rtc::CritScope lock(&send_critsect_); return timestamp_; } void RTPSender::SetStartTimestamp(uint32_t timestamp, bool force) { rtc::CritScope lock(&send_critsect_); if (force) { start_timestamp_forced_ = true; start_timestamp_ = timestamp; } else { if (!start_timestamp_forced_) { start_timestamp_ = timestamp; } } } uint32_t RTPSender::StartTimestamp() const { rtc::CritScope lock(&send_critsect_); return start_timestamp_; } uint32_t RTPSender::GenerateNewSSRC() { // If configured via API, return 0. rtc::CritScope lock(&send_critsect_); if (ssrc_forced_) { return 0; } ssrc_ = ssrc_db_->CreateSSRC(); RTC_DCHECK(ssrc_ != 0); bitrates_.set_ssrc(ssrc_); return ssrc_; } void RTPSender::SetSSRC(uint32_t ssrc) { // This is configured via the API. rtc::CritScope lock(&send_critsect_); if (ssrc_ == ssrc && ssrc_forced_) { return; // Since it's same ssrc, don't reset anything. } ssrc_forced_ = true; ssrc_db_->ReturnSSRC(ssrc_); ssrc_db_->RegisterSSRC(ssrc); ssrc_ = ssrc; bitrates_.set_ssrc(ssrc_); if (!sequence_number_forced_) { sequence_number_ = random_.Rand(1, kMaxInitRtpSeqNumber); } } uint32_t RTPSender::SSRC() const { rtc::CritScope lock(&send_critsect_); return ssrc_; } void RTPSender::SetCsrcs(const std::vector& csrcs) { assert(csrcs.size() <= kRtpCsrcSize); rtc::CritScope lock(&send_critsect_); csrcs_ = csrcs; } void RTPSender::SetSequenceNumber(uint16_t seq) { rtc::CritScope lock(&send_critsect_); sequence_number_forced_ = true; sequence_number_ = seq; } uint16_t RTPSender::SequenceNumber() const { rtc::CritScope lock(&send_critsect_); return sequence_number_; } // Audio. int32_t RTPSender::SendTelephoneEvent(uint8_t key, uint16_t time_ms, uint8_t level) { if (!audio_configured_) { return -1; } return audio_->SendTelephoneEvent(key, time_ms, level); } int32_t RTPSender::SetAudioPacketSize(uint16_t packet_size_samples) { if (!audio_configured_) { return -1; } return audio_->SetAudioPacketSize(packet_size_samples); } int32_t RTPSender::SetAudioLevel(uint8_t level_d_bov) { return audio_->SetAudioLevel(level_d_bov); } int32_t RTPSender::SetRED(int8_t payload_type) { if (!audio_configured_) { return -1; } return audio_->SetRED(payload_type); } int32_t RTPSender::RED(int8_t *payload_type) const { if (!audio_configured_) { return -1; } return audio_->RED(payload_type); } RtpVideoCodecTypes RTPSender::VideoCodecType() const { assert(!audio_configured_ && "Sender is an audio stream!"); return video_->VideoCodecType(); } void RTPSender::SetGenericFECStatus(bool enable, uint8_t payload_type_red, uint8_t payload_type_fec) { RTC_DCHECK(!audio_configured_); video_->SetGenericFECStatus(enable, payload_type_red, payload_type_fec); } void RTPSender::GenericFECStatus(bool* enable, uint8_t* payload_type_red, uint8_t* payload_type_fec) const { RTC_DCHECK(!audio_configured_); video_->GenericFECStatus(enable, payload_type_red, payload_type_fec); } int32_t RTPSender::SetFecParameters( const FecProtectionParams *delta_params, const FecProtectionParams *key_params) { if (audio_configured_) { return -1; } video_->SetFecParameters(delta_params, key_params); return 0; } void RTPSender::BuildRtxPacket(uint8_t* buffer, size_t* length, uint8_t* buffer_rtx) { rtc::CritScope lock(&send_critsect_); uint8_t* data_buffer_rtx = buffer_rtx; // Add RTX header. RtpUtility::RtpHeaderParser rtp_parser( reinterpret_cast(buffer), *length); RTPHeader rtp_header; rtp_parser.Parse(&rtp_header); // Add original RTP header. memcpy(data_buffer_rtx, buffer, rtp_header.headerLength); // Replace payload type, if a specific type is set for RTX. auto kv = rtx_payload_type_map_.find(rtp_header.payloadType); // Use rtx mapping associated with media codec if we can't find one, assuming // it's red. // TODO(holmer): Remove once old Chrome versions don't rely on this. if (kv == rtx_payload_type_map_.end()) kv = rtx_payload_type_map_.find(payload_type_); if (kv != rtx_payload_type_map_.end()) data_buffer_rtx[1] = kv->second; if (rtp_header.markerBit) data_buffer_rtx[1] |= kRtpMarkerBitMask; // Replace sequence number. uint8_t* ptr = data_buffer_rtx + 2; ByteWriter::WriteBigEndian(ptr, sequence_number_rtx_++); // Replace SSRC. ptr += 6; ByteWriter::WriteBigEndian(ptr, ssrc_rtx_); // Add OSN (original sequence number). ptr = data_buffer_rtx + rtp_header.headerLength; ByteWriter::WriteBigEndian(ptr, rtp_header.sequenceNumber); ptr += 2; // Add original payload data. memcpy(ptr, buffer + rtp_header.headerLength, *length - rtp_header.headerLength); *length += 2; } void RTPSender::RegisterRtpStatisticsCallback( StreamDataCountersCallback* callback) { CriticalSectionScoped cs(statistics_crit_.get()); rtp_stats_callback_ = callback; } StreamDataCountersCallback* RTPSender::GetRtpStatisticsCallback() const { CriticalSectionScoped cs(statistics_crit_.get()); return rtp_stats_callback_; } uint32_t RTPSender::BitrateSent() const { return total_bitrate_sent_.BitrateLast(); } void RTPSender::SetRtpState(const RtpState& rtp_state) { rtc::CritScope lock(&send_critsect_); sequence_number_ = rtp_state.sequence_number; sequence_number_forced_ = true; timestamp_ = rtp_state.timestamp; capture_time_ms_ = rtp_state.capture_time_ms; last_timestamp_time_ms_ = rtp_state.last_timestamp_time_ms; media_has_been_sent_ = rtp_state.media_has_been_sent; } RtpState RTPSender::GetRtpState() const { rtc::CritScope lock(&send_critsect_); RtpState state; state.sequence_number = sequence_number_; state.start_timestamp = start_timestamp_; state.timestamp = timestamp_; state.capture_time_ms = capture_time_ms_; state.last_timestamp_time_ms = last_timestamp_time_ms_; state.media_has_been_sent = media_has_been_sent_; return state; } void RTPSender::SetRtxRtpState(const RtpState& rtp_state) { rtc::CritScope lock(&send_critsect_); sequence_number_rtx_ = rtp_state.sequence_number; } RtpState RTPSender::GetRtxRtpState() const { rtc::CritScope lock(&send_critsect_); RtpState state; state.sequence_number = sequence_number_rtx_; state.start_timestamp = start_timestamp_; return state; } } // namespace webrtc