/* * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/agc2/rnn_vad/rnn.h" #include #include #include #include "modules/audio_processing/agc2/rnn_vad/test_utils.h" #include "modules/audio_processing/test/performance_timer.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/system/arch.h" #include "test/gtest.h" #include "third_party/rnnoise/src/rnn_activations.h" #include "third_party/rnnoise/src/rnn_vad_weights.h" namespace webrtc { namespace rnn_vad { namespace test { namespace { void TestFullyConnectedLayer(FullyConnectedLayer* fc, rtc::ArrayView input_vector, rtc::ArrayView expected_output) { RTC_CHECK(fc); fc->ComputeOutput(input_vector); ExpectNearAbsolute(expected_output, fc->GetOutput(), 1e-5f); } void TestGatedRecurrentLayer( GatedRecurrentLayer* gru, rtc::ArrayView input_sequence, rtc::ArrayView expected_output_sequence) { RTC_CHECK(gru); auto gru_output_view = gru->GetOutput(); const size_t input_sequence_length = rtc::CheckedDivExact(input_sequence.size(), gru->input_size()); const size_t output_sequence_length = rtc::CheckedDivExact(expected_output_sequence.size(), gru->output_size()); ASSERT_EQ(input_sequence_length, output_sequence_length) << "The test data length is invalid."; // Feed the GRU layer and check the output at every step. gru->Reset(); for (size_t i = 0; i < input_sequence_length; ++i) { SCOPED_TRACE(i); gru->ComputeOutput( input_sequence.subview(i * gru->input_size(), gru->input_size())); const auto expected_output = expected_output_sequence.subview( i * gru->output_size(), gru->output_size()); ExpectNearAbsolute(expected_output, gru_output_view, 3e-6f); } } // Fully connected layer test data. constexpr std::array kFullyConnectedInputVector = { -1.00131f, -0.627069f, -7.81097f, 7.86285f, -2.87145f, 3.32365f, -0.653161f, 0.529839f, -0.425307f, 0.25583f, 0.235094f, 0.230527f, -0.144687f, 0.182785f, 0.57102f, 0.125039f, 0.479482f, -0.0255439f, -0.0073141f, -0.147346f, -0.217106f, -0.0846906f, -8.34943f, 3.09065f, 1.42628f, -0.85235f, -0.220207f, -0.811163f, 2.09032f, -2.01425f, -0.690268f, -0.925327f, -0.541354f, 0.58455f, -0.606726f, -0.0372358f, 0.565991f, 0.435854f, 0.420812f, 0.162198f, -2.13f, 10.0089f}; constexpr std::array kFullyConnectedExpectedOutput = { -0.623293f, -0.988299f, 0.999378f, 0.967168f, 0.103087f, -0.978545f, -0.856347f, 0.346675f, 1.f, -0.717442f, -0.544176f, 0.960363f, 0.983443f, 0.999991f, -0.824335f, 0.984742f, 0.990208f, 0.938179f, 0.875092f, 0.999846f, 0.997707f, -0.999382f, 0.973153f, -0.966605f}; // Gated recurrent units layer test data. constexpr size_t kGruInputSize = 5; constexpr size_t kGruOutputSize = 4; constexpr std::array kGruBias = {96, -99, -81, -114, 49, 119, -118, 68, -76, 91, 121, 125}; constexpr std::array kGruWeights = { // Input 0. 124, 9, 1, 116, // Update. -66, -21, -118, -110, // Reset. 104, 75, -23, -51, // Output. // Input 1. -72, -111, 47, 93, // Update. 77, -98, 41, -8, // Reset. 40, -23, -43, -107, // Output. // Input 2. 9, -73, 30, -32, // Update. -2, 64, -26, 91, // Reset. -48, -24, -28, -104, // Output. // Input 3. 74, -46, 116, 15, // Update. 32, 52, -126, -38, // Reset. -121, 12, -16, 110, // Output. // Input 4. -95, 66, -103, -35, // Update. -38, 3, -126, -61, // Reset. 28, 98, -117, -43 // Output. }; constexpr std::array kGruRecurrentWeights = { // Output 0. -3, 87, 50, 51, // Update. -22, 27, -39, 62, // Reset. 31, -83, -52, -48, // Output. // Output 1. -6, 83, -19, 104, // Update. 105, 48, 23, 68, // Reset. 23, 40, 7, -120, // Output. // Output 2. 64, -62, 117, 85, // Update. 51, -43, 54, -105, // Reset. 120, 56, -128, -107, // Output. // Output 3. 39, 50, -17, -47, // Update. -117, 14, 108, 12, // Reset. -7, -72, 103, -87, // Output. }; constexpr std::array kGruInputSequence = { 0.89395463f, 0.93224651f, 0.55788344f, 0.32341808f, 0.93355054f, 0.13475326f, 0.97370994f, 0.14253306f, 0.93710381f, 0.76093364f, 0.65780413f, 0.41657975f, 0.49403164f, 0.46843281f, 0.75138855f, 0.24517593f, 0.47657707f, 0.57064998f, 0.435184f, 0.19319285f}; constexpr std::array kGruExpectedOutputSequence = { 0.0239123f, 0.5773077f, 0.f, 0.f, 0.01282811f, 0.64330572f, 0.f, 0.04863098f, 0.00781069f, 0.75267816f, 0.f, 0.02579715f, 0.00471378f, 0.59162533f, 0.11087593f, 0.01334511f}; std::string GetOptimizationName(Optimization optimization) { switch (optimization) { case Optimization::kSse2: return "SSE2"; case Optimization::kNeon: return "NEON"; case Optimization::kNone: return "none"; } } struct Result { Optimization optimization; double average_us; double std_dev_us; }; } // namespace // Checks that the output of a fully connected layer is within tolerance given // test input data. TEST(RnnVadTest, CheckFullyConnectedLayerOutput) { FullyConnectedLayer fc(rnnoise::kInputLayerInputSize, rnnoise::kInputLayerOutputSize, rnnoise::kInputDenseBias, rnnoise::kInputDenseWeights, rnnoise::TansigApproximated, Optimization::kNone); TestFullyConnectedLayer(&fc, kFullyConnectedInputVector, kFullyConnectedExpectedOutput); } // Checks that the output of a GRU layer is within tolerance given test input // data. TEST(RnnVadTest, CheckGatedRecurrentLayer) { GatedRecurrentLayer gru(kGruInputSize, kGruOutputSize, kGruBias, kGruWeights, kGruRecurrentWeights, Optimization::kNone); TestGatedRecurrentLayer(&gru, kGruInputSequence, kGruExpectedOutputSequence); } #if defined(WEBRTC_ARCH_X86_FAMILY) // Like CheckFullyConnectedLayerOutput, but testing the SSE2 implementation. TEST(RnnVadTest, CheckFullyConnectedLayerOutputSse2) { if (!IsOptimizationAvailable(Optimization::kSse2)) { return; } FullyConnectedLayer fc(rnnoise::kInputLayerInputSize, rnnoise::kInputLayerOutputSize, rnnoise::kInputDenseBias, rnnoise::kInputDenseWeights, rnnoise::TansigApproximated, Optimization::kSse2); TestFullyConnectedLayer(&fc, kFullyConnectedInputVector, kFullyConnectedExpectedOutput); } // Like CheckGatedRecurrentLayer, but testing the SSE2 implementation. TEST(RnnVadTest, CheckGatedRecurrentLayerSse2) { if (!IsOptimizationAvailable(Optimization::kSse2)) { return; } GatedRecurrentLayer gru(kGruInputSize, kGruOutputSize, kGruBias, kGruWeights, kGruRecurrentWeights, Optimization::kSse2); TestGatedRecurrentLayer(&gru, kGruInputSequence, kGruExpectedOutputSequence); } #endif // WEBRTC_ARCH_X86_FAMILY TEST(RnnVadTest, DISABLED_BenchmarkFullyConnectedLayer) { std::vector> implementations; implementations.emplace_back(std::make_unique( rnnoise::kInputLayerInputSize, rnnoise::kInputLayerOutputSize, rnnoise::kInputDenseBias, rnnoise::kInputDenseWeights, rnnoise::TansigApproximated, Optimization::kNone)); if (IsOptimizationAvailable(Optimization::kSse2)) { implementations.emplace_back(std::make_unique( rnnoise::kInputLayerInputSize, rnnoise::kInputLayerOutputSize, rnnoise::kInputDenseBias, rnnoise::kInputDenseWeights, rnnoise::TansigApproximated, Optimization::kSse2)); } std::vector results; constexpr size_t number_of_tests = 10000; for (auto& fc : implementations) { ::webrtc::test::PerformanceTimer perf_timer(number_of_tests); for (size_t k = 0; k < number_of_tests; ++k) { perf_timer.StartTimer(); fc->ComputeOutput(kFullyConnectedInputVector); perf_timer.StopTimer(); } results.push_back({fc->optimization(), perf_timer.GetDurationAverage(), perf_timer.GetDurationStandardDeviation()}); } for (const auto& result : results) { RTC_LOG(LS_INFO) << GetOptimizationName(result.optimization) << ": " << (result.average_us / 1e3) << " +/- " << (result.std_dev_us / 1e3) << " ms"; } } TEST(RnnVadTest, DISABLED_BenchmarkGatedRecurrentLayer) { std::vector> implementations; implementations.emplace_back(std::make_unique( kGruInputSize, kGruOutputSize, kGruBias, kGruWeights, kGruRecurrentWeights, Optimization::kNone)); rtc::ArrayView input_sequence(kGruInputSequence); static_assert(kGruInputSequence.size() % kGruInputSize == 0, ""); constexpr size_t input_sequence_length = kGruInputSequence.size() / kGruInputSize; std::vector results; constexpr size_t number_of_tests = 10000; for (auto& gru : implementations) { ::webrtc::test::PerformanceTimer perf_timer(number_of_tests); gru->Reset(); for (size_t k = 0; k < number_of_tests; ++k) { perf_timer.StartTimer(); for (size_t i = 0; i < input_sequence_length; ++i) { gru->ComputeOutput( input_sequence.subview(i * gru->input_size(), gru->input_size())); } perf_timer.StopTimer(); } results.push_back({gru->optimization(), perf_timer.GetDurationAverage(), perf_timer.GetDurationStandardDeviation()}); } for (const auto& result : results) { RTC_LOG(LS_INFO) << GetOptimizationName(result.optimization) << ": " << (result.average_us / 1e3) << " +/- " << (result.std_dev_us / 1e3) << " ms"; } } } // namespace test } // namespace rnn_vad } // namespace webrtc