/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // // Implements core class for intelligibility enhancer. // // Details of the model and algorithm can be found in the original paper: // http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6882788 // #include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h" #include #include #include #include #include "webrtc/base/checks.h" #include "webrtc/common_audio/vad/include/webrtc_vad.h" #include "webrtc/common_audio/window_generator.h" namespace webrtc { namespace { const int kWindowSizeMs = 2; const int kChunkSizeMs = 10; // Size provided by APM. const float kClipFreq = 200.0f; const float kConfigRho = 0.02f; // Default production and interpretation SNR. const float kKbdAlpha = 1.5f; const float kLambdaBot = -1.0f; // Extreme values in bisection const float kLambdaTop = -10e-18f; // search for lamda. } // namespace using std::complex; using std::max; using std::min; using VarianceType = intelligibility::VarianceArray::StepType; IntelligibilityEnhancer::TransformCallback::TransformCallback( IntelligibilityEnhancer* parent, IntelligibilityEnhancer::AudioSource source) : parent_(parent), source_(source) { } void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock( const complex* const* in_block, int in_channels, int frames, int /* out_channels */, complex* const* out_block) { DCHECK_EQ(parent_->freqs_, frames); for (int i = 0; i < in_channels; ++i) { parent_->DispatchAudio(source_, in_block[i], out_block[i]); } } IntelligibilityEnhancer::IntelligibilityEnhancer(int erb_resolution, int sample_rate_hz, int channels, int cv_type, float cv_alpha, int cv_win, int analysis_rate, int variance_rate, float gain_limit) : freqs_(RealFourier::ComplexLength( RealFourier::FftOrder(sample_rate_hz * kWindowSizeMs / 1000))), window_size_(1 << RealFourier::FftOrder(freqs_)), chunk_length_(sample_rate_hz * kChunkSizeMs / 1000), bank_size_(GetBankSize(sample_rate_hz, erb_resolution)), sample_rate_hz_(sample_rate_hz), erb_resolution_(erb_resolution), channels_(channels), analysis_rate_(analysis_rate), variance_rate_(variance_rate), clear_variance_(freqs_, static_cast(cv_type), cv_win, cv_alpha), noise_variance_(freqs_, VarianceType::kStepInfinite, 475, 0.01f), filtered_clear_var_(new float[bank_size_]), filtered_noise_var_(new float[bank_size_]), filter_bank_(bank_size_), center_freqs_(new float[bank_size_]), rho_(new float[bank_size_]), gains_eq_(new float[bank_size_]), gain_applier_(freqs_, gain_limit), temp_out_buffer_(nullptr), input_audio_(new float* [channels]), kbd_window_(new float[window_size_]), render_callback_(this, AudioSource::kRenderStream), capture_callback_(this, AudioSource::kCaptureStream), block_count_(0), analysis_step_(0), vad_high_(WebRtcVad_Create()), vad_low_(WebRtcVad_Create()), vad_tmp_buffer_(new int16_t[chunk_length_]) { DCHECK_LE(kConfigRho, 1.0f); CreateErbBank(); WebRtcVad_Init(vad_high_); WebRtcVad_set_mode(vad_high_, 0); // High likelihood of speech. WebRtcVad_Init(vad_low_); WebRtcVad_set_mode(vad_low_, 3); // Low likelihood of speech. temp_out_buffer_ = static_cast( malloc(sizeof(*temp_out_buffer_) * channels_ + sizeof(**temp_out_buffer_) * chunk_length_ * channels_)); for (int i = 0; i < channels_; ++i) { temp_out_buffer_[i] = reinterpret_cast(temp_out_buffer_ + channels_) + chunk_length_ * i; } // Assumes all rho equal. for (int i = 0; i < bank_size_; ++i) { rho_[i] = kConfigRho * kConfigRho; } float freqs_khz = kClipFreq / 1000.0f; int erb_index = static_cast(ceilf( 11.17f * logf((freqs_khz + 0.312f) / (freqs_khz + 14.6575f)) + 43.0f)); start_freq_ = std::max(1, erb_index * erb_resolution); WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_, kbd_window_.get()); render_mangler_.reset(new LappedTransform( channels_, channels_, chunk_length_, kbd_window_.get(), window_size_, window_size_ / 2, &render_callback_)); capture_mangler_.reset(new LappedTransform( channels_, channels_, chunk_length_, kbd_window_.get(), window_size_, window_size_ / 2, &capture_callback_)); } IntelligibilityEnhancer::~IntelligibilityEnhancer() { WebRtcVad_Free(vad_low_); WebRtcVad_Free(vad_high_); free(temp_out_buffer_); } void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio) { for (int i = 0; i < chunk_length_; ++i) { vad_tmp_buffer_[i] = (int16_t)audio[0][i]; } has_voice_low_ = WebRtcVad_Process(vad_low_, sample_rate_hz_, vad_tmp_buffer_.get(), chunk_length_) == 1; // Process and enhance chunk of |audio| render_mangler_->ProcessChunk(audio, temp_out_buffer_); for (int i = 0; i < channels_; ++i) { memcpy(audio[i], temp_out_buffer_[i], chunk_length_ * sizeof(**temp_out_buffer_)); } } void IntelligibilityEnhancer::ProcessCaptureAudio(float* const* audio) { for (int i = 0; i < chunk_length_; ++i) { vad_tmp_buffer_[i] = (int16_t)audio[0][i]; } // TODO(bercic): The VAD was always detecting voice in the noise stream, // no matter what the aggressiveness, so it was temporarily disabled here. #if 0 if (WebRtcVad_Process(vad_high_, sample_rate_hz_, vad_tmp_buffer_.get(), chunk_length_) == 1) { printf("capture HAS speech\n"); return; } printf("capture NO speech\n"); #endif capture_mangler_->ProcessChunk(audio, temp_out_buffer_); } void IntelligibilityEnhancer::DispatchAudio( IntelligibilityEnhancer::AudioSource source, const complex* in_block, complex* out_block) { switch (source) { case kRenderStream: ProcessClearBlock(in_block, out_block); break; case kCaptureStream: ProcessNoiseBlock(in_block, out_block); break; } } void IntelligibilityEnhancer::ProcessClearBlock(const complex* in_block, complex* out_block) { if (block_count_ < 2) { memset(out_block, 0, freqs_ * sizeof(*out_block)); ++block_count_; return; } // For now, always assumes enhancement is necessary. // TODO(ekmeyerson): Change to only enhance if necessary, // based on experiments with different cutoffs. if (has_voice_low_ || true) { clear_variance_.Step(in_block, false); const float power_target = std::accumulate( clear_variance_.variance(), clear_variance_.variance() + freqs_, 0.0f); if (block_count_ % analysis_rate_ == analysis_rate_ - 1) { AnalyzeClearBlock(power_target); ++analysis_step_; if (analysis_step_ == variance_rate_) { analysis_step_ = 0; clear_variance_.Clear(); noise_variance_.Clear(); } } ++block_count_; } /* efidata(n,:) = sqrt(b(n)) * fidata(n,:) */ gain_applier_.Apply(in_block, out_block); } void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) { FilterVariance(clear_variance_.variance(), filtered_clear_var_.get()); FilterVariance(noise_variance_.variance(), filtered_noise_var_.get()); SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.get()); const float power_top = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.get()); const float power_bot = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); if (power_target >= power_bot && power_target <= power_top) { SolveForLambda(power_target, power_bot, power_top); UpdateErbGains(); } // Else experiencing variance underflow, so do nothing. } void IntelligibilityEnhancer::SolveForLambda(float power_target, float power_bot, float power_top) { const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values const int kMaxIters = 100; // for these, based on experiments. const float reciprocal_power_target = 1.f / power_target; float lambda_bot = kLambdaBot; float lambda_top = kLambdaTop; float power_ratio = 2.0f; // Ratio of achieved power to target power. int iters = 0; while (std::fabs(power_ratio - 1.0f) > kConvergeThresh && iters <= kMaxIters) { const float lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f; SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.get()); const float power = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); if (power < power_target) { lambda_bot = lambda; } else { lambda_top = lambda; } power_ratio = std::fabs(power * reciprocal_power_target); ++iters; } } void IntelligibilityEnhancer::UpdateErbGains() { // (ERB gain) = filterbank' * (freq gain) float* gains = gain_applier_.target(); for (int i = 0; i < freqs_; ++i) { gains[i] = 0.0f; for (int j = 0; j < bank_size_; ++j) { gains[i] = fmaf(filter_bank_[j][i], gains_eq_[j], gains[i]); } } } void IntelligibilityEnhancer::ProcessNoiseBlock(const complex* in_block, complex* /*out_block*/) { noise_variance_.Step(in_block); } int IntelligibilityEnhancer::GetBankSize(int sample_rate, int erb_resolution) { float freq_limit = sample_rate / 2000.0f; int erb_scale = ceilf( 11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.0f); return erb_scale * erb_resolution; } void IntelligibilityEnhancer::CreateErbBank() { int lf = 1, rf = 4; for (int i = 0; i < bank_size_; ++i) { float abs_temp = fabsf((i + 1.0f) / static_cast(erb_resolution_)); center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp)); center_freqs_[i] -= 14678.49f; } float last_center_freq = center_freqs_[bank_size_ - 1]; for (int i = 0; i < bank_size_; ++i) { center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq; } for (int i = 0; i < bank_size_; ++i) { filter_bank_[i].resize(freqs_); } for (int i = 1; i <= bank_size_; ++i) { int lll, ll, rr, rrr; lll = round(center_freqs_[max(1, i - lf) - 1] * freqs_ / (0.5f * sample_rate_hz_)); ll = round(center_freqs_[max(1, i) - 1] * freqs_ / (0.5f * sample_rate_hz_)); lll = min(freqs_, max(lll, 1)) - 1; ll = min(freqs_, max(ll, 1)) - 1; rrr = round(center_freqs_[min(bank_size_, i + rf) - 1] * freqs_ / (0.5f * sample_rate_hz_)); rr = round(center_freqs_[min(bank_size_, i + 1) - 1] * freqs_ / (0.5f * sample_rate_hz_)); rrr = min(freqs_, max(rrr, 1)) - 1; rr = min(freqs_, max(rr, 1)) - 1; float step, element; step = 1.0f / (ll - lll); element = 0.0f; for (int j = lll; j <= ll; ++j) { filter_bank_[i - 1][j] = element; element += step; } step = 1.0f / (rrr - rr); element = 1.0f; for (int j = rr; j <= rrr; ++j) { filter_bank_[i - 1][j] = element; element -= step; } for (int j = ll; j <= rr; ++j) { filter_bank_[i - 1][j] = 1.0f; } } float sum; for (int i = 0; i < freqs_; ++i) { sum = 0.0f; for (int j = 0; j < bank_size_; ++j) { sum += filter_bank_[j][i]; } for (int j = 0; j < bank_size_; ++j) { filter_bank_[j][i] /= sum; } } } void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda, int start_freq, float* sols) { bool quadratic = (kConfigRho < 1.0f); const float* var_x0 = filtered_clear_var_.get(); const float* var_n0 = filtered_noise_var_.get(); for (int n = 0; n < start_freq; ++n) { sols[n] = 1.0f; } // Analytic solution for optimal gains. See paper for derivation. for (int n = start_freq - 1; n < bank_size_; ++n) { float alpha0, beta0, gamma0; gamma0 = 0.5f * rho_[n] * var_x0[n] * var_n0[n] + lambda * var_x0[n] * var_n0[n] * var_n0[n]; beta0 = lambda * var_x0[n] * (2 - rho_[n]) * var_x0[n] * var_n0[n]; if (quadratic) { alpha0 = lambda * var_x0[n] * (1 - rho_[n]) * var_x0[n] * var_x0[n]; sols[n] = (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) / (2 * alpha0); } else { sols[n] = -gamma0 / beta0; } sols[n] = fmax(0, sols[n]); } } void IntelligibilityEnhancer::FilterVariance(const float* var, float* result) { DCHECK_GT(freqs_, 0); for (int i = 0; i < bank_size_; ++i) { result[i] = DotProduct(&filter_bank_[i][0], var, freqs_); } } float IntelligibilityEnhancer::DotProduct(const float* a, const float* b, int length) { float ret = 0.0f; for (int i = 0; i < length; ++i) { ret = fmaf(a[i], b[i], ret); } return ret; } } // namespace webrtc