/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/rtp_rtcp/source/rtp_sender.h" #include // srand #include "webrtc/modules/rtp_rtcp/source/rtp_packet_history.h" #include "webrtc/modules/rtp_rtcp/source/rtp_sender_audio.h" #include "webrtc/modules/rtp_rtcp/source/rtp_sender_video.h" #include "webrtc/system_wrappers/interface/critical_section_wrapper.h" #include "webrtc/system_wrappers/interface/trace.h" #include "webrtc/system_wrappers/interface/trace_event.h" namespace webrtc { // Max in the RFC 3550 is 255 bytes, we limit it to be modulus 32 for SRTP. const int kMaxPaddingLength = 224; namespace { const char* FrameTypeToString(const FrameType frame_type) { switch (frame_type) { case kFrameEmpty: return "empty"; case kAudioFrameSpeech: return "audio_speech"; case kAudioFrameCN: return "audio_cn"; case kVideoFrameKey: return "video_key"; case kVideoFrameDelta: return "video_delta"; case kVideoFrameGolden: return "video_golden"; case kVideoFrameAltRef: return "video_altref"; } return ""; } } // namespace RTPSender::RTPSender(const int32_t id, const bool audio, Clock *clock, Transport *transport, RtpAudioFeedback *audio_feedback, PacedSender *paced_sender) : Bitrate(clock), id_(id), audio_configured_(audio), audio_(NULL), video_(NULL), paced_sender_(paced_sender), send_critsect_(CriticalSectionWrapper::CreateCriticalSection()), transport_(transport), sending_media_(true), // Default to sending media. max_payload_length_(IP_PACKET_SIZE - 28), // Default is IP-v4/UDP. target_send_bitrate_(0), packet_over_head_(28), payload_type_(-1), payload_type_map_(), rtp_header_extension_map_(), transmission_time_offset_(0), absolute_send_time_(0), // NACK. nack_byte_count_times_(), nack_byte_count_(), nack_bitrate_(clock), packet_history_(new RTPPacketHistory(clock)), // Statistics statistics_crit_(CriticalSectionWrapper::CreateCriticalSection()), packets_sent_(0), payload_bytes_sent_(0), start_time_stamp_forced_(false), start_time_stamp_(0), ssrc_db_(*SSRCDatabase::GetSSRCDatabase()), remote_ssrc_(0), sequence_number_forced_(false), ssrc_forced_(false), timestamp_(0), capture_time_ms_(0), last_packet_marker_bit_(false), num_csrcs_(0), csrcs_(), include_csrcs_(true), rtx_(kRtxOff), payload_type_rtx_(-1) { memset(nack_byte_count_times_, 0, sizeof(nack_byte_count_times_)); memset(nack_byte_count_, 0, sizeof(nack_byte_count_)); memset(csrcs_, 0, sizeof(csrcs_)); // We need to seed the random generator. srand(static_cast(clock_->TimeInMilliseconds())); ssrc_ = ssrc_db_.CreateSSRC(); // Can't be 0. ssrc_rtx_ = ssrc_db_.CreateSSRC(); // Can't be 0. // Random start, 16 bits. Can't be 0. sequence_number_rtx_ = static_cast(rand() + 1) & 0x7FFF; sequence_number_ = static_cast(rand() + 1) & 0x7FFF; if (audio) { audio_ = new RTPSenderAudio(id, clock_, this); audio_->RegisterAudioCallback(audio_feedback); } else { video_ = new RTPSenderVideo(id, clock_, this); } WEBRTC_TRACE(kTraceMemory, kTraceRtpRtcp, id, "%s created", __FUNCTION__); } RTPSender::~RTPSender() { if (remote_ssrc_ != 0) { ssrc_db_.ReturnSSRC(remote_ssrc_); } ssrc_db_.ReturnSSRC(ssrc_); SSRCDatabase::ReturnSSRCDatabase(); delete send_critsect_; while (!payload_type_map_.empty()) { std::map::iterator it = payload_type_map_.begin(); delete it->second; payload_type_map_.erase(it); } delete packet_history_; delete audio_; delete video_; WEBRTC_TRACE(kTraceMemory, kTraceRtpRtcp, id_, "%s deleted", __FUNCTION__); } void RTPSender::SetTargetSendBitrate(const uint32_t bits) { target_send_bitrate_ = static_cast(bits / 1000); } uint16_t RTPSender::ActualSendBitrateKbit() const { return (uint16_t)(Bitrate::BitrateNow() / 1000); } uint32_t RTPSender::VideoBitrateSent() const { if (video_) { return video_->VideoBitrateSent(); } return 0; } uint32_t RTPSender::FecOverheadRate() const { if (video_) { return video_->FecOverheadRate(); } return 0; } uint32_t RTPSender::NackOverheadRate() const { return nack_bitrate_.BitrateLast(); } int32_t RTPSender::SetTransmissionTimeOffset( const int32_t transmission_time_offset) { if (transmission_time_offset > (0x800000 - 1) || transmission_time_offset < -(0x800000 - 1)) { // Word24. return -1; } CriticalSectionScoped cs(send_critsect_); transmission_time_offset_ = transmission_time_offset; return 0; } int32_t RTPSender::SetAbsoluteSendTime( const uint32_t absolute_send_time) { if (absolute_send_time > 0xffffff) { // UWord24. return -1; } CriticalSectionScoped cs(send_critsect_); absolute_send_time_ = absolute_send_time; return 0; } int32_t RTPSender::RegisterRtpHeaderExtension(const RTPExtensionType type, const uint8_t id) { CriticalSectionScoped cs(send_critsect_); return rtp_header_extension_map_.Register(type, id); } int32_t RTPSender::DeregisterRtpHeaderExtension( const RTPExtensionType type) { CriticalSectionScoped cs(send_critsect_); return rtp_header_extension_map_.Deregister(type); } uint16_t RTPSender::RtpHeaderExtensionTotalLength() const { CriticalSectionScoped cs(send_critsect_); return rtp_header_extension_map_.GetTotalLengthInBytes(); } int32_t RTPSender::RegisterPayload( const char payload_name[RTP_PAYLOAD_NAME_SIZE], const int8_t payload_number, const uint32_t frequency, const uint8_t channels, const uint32_t rate) { assert(payload_name); CriticalSectionScoped cs(send_critsect_); std::map::iterator it = payload_type_map_.find(payload_number); if (payload_type_map_.end() != it) { // We already use this payload type. ModuleRTPUtility::Payload *payload = it->second; assert(payload); // Check if it's the same as we already have. if (ModuleRTPUtility::StringCompare(payload->name, payload_name, RTP_PAYLOAD_NAME_SIZE - 1)) { if (audio_configured_ && payload->audio && payload->typeSpecific.Audio.frequency == frequency && (payload->typeSpecific.Audio.rate == rate || payload->typeSpecific.Audio.rate == 0 || rate == 0)) { payload->typeSpecific.Audio.rate = rate; // Ensure that we update the rate if new or old is zero. return 0; } if (!audio_configured_ && !payload->audio) { return 0; } } return -1; } int32_t ret_val = -1; ModuleRTPUtility::Payload *payload = NULL; if (audio_configured_) { ret_val = audio_->RegisterAudioPayload(payload_name, payload_number, frequency, channels, rate, payload); } else { ret_val = video_->RegisterVideoPayload(payload_name, payload_number, rate, payload); } if (payload) { payload_type_map_[payload_number] = payload; } return ret_val; } int32_t RTPSender::DeRegisterSendPayload( const int8_t payload_type) { CriticalSectionScoped lock(send_critsect_); std::map::iterator it = payload_type_map_.find(payload_type); if (payload_type_map_.end() == it) { return -1; } ModuleRTPUtility::Payload *payload = it->second; delete payload; payload_type_map_.erase(it); return 0; } int8_t RTPSender::SendPayloadType() const { return payload_type_; } int RTPSender::SendPayloadFrequency() const { return audio_ != NULL ? audio_->AudioFrequency() : kVideoPayloadTypeFrequency; } int32_t RTPSender::SetMaxPayloadLength( const uint16_t max_payload_length, const uint16_t packet_over_head) { // Sanity check. if (max_payload_length < 100 || max_payload_length > IP_PACKET_SIZE) { WEBRTC_TRACE(kTraceError, kTraceRtpRtcp, id_, "%s invalid argument", __FUNCTION__); return -1; } CriticalSectionScoped cs(send_critsect_); max_payload_length_ = max_payload_length; packet_over_head_ = packet_over_head; WEBRTC_TRACE(kTraceInfo, kTraceRtpRtcp, id_, "SetMaxPayloadLength to %d.", max_payload_length); return 0; } uint16_t RTPSender::MaxDataPayloadLength() const { if (audio_configured_) { return max_payload_length_ - RTPHeaderLength(); } else { return max_payload_length_ - RTPHeaderLength() - video_->FECPacketOverhead() - ((rtx_) ? 2 : 0); // Include the FEC/ULP/RED overhead. } } uint16_t RTPSender::MaxPayloadLength() const { return max_payload_length_; } uint16_t RTPSender::PacketOverHead() const { return packet_over_head_; } void RTPSender::SetRTXStatus(RtxMode mode, bool set_ssrc, uint32_t ssrc) { CriticalSectionScoped cs(send_critsect_); rtx_ = mode; if (rtx_ != kRtxOff) { if (set_ssrc) { ssrc_rtx_ = ssrc; } else { ssrc_rtx_ = ssrc_db_.CreateSSRC(); // Can't be 0. } } } void RTPSender::RTXStatus(RtxMode* mode, uint32_t* ssrc, int* payload_type) const { CriticalSectionScoped cs(send_critsect_); *mode = rtx_; *ssrc = ssrc_rtx_; *payload_type = payload_type_rtx_; } void RTPSender::SetRtxPayloadType(int payload_type) { CriticalSectionScoped cs(send_critsect_); payload_type_rtx_ = payload_type; } int32_t RTPSender::CheckPayloadType(const int8_t payload_type, RtpVideoCodecTypes *video_type) { CriticalSectionScoped cs(send_critsect_); if (payload_type < 0) { WEBRTC_TRACE(kTraceError, kTraceRtpRtcp, id_, "\tinvalid payload_type (%d)", payload_type); return -1; } if (audio_configured_) { int8_t red_pl_type = -1; if (audio_->RED(red_pl_type) == 0) { // We have configured RED. if (red_pl_type == payload_type) { // And it's a match... return 0; } } } if (payload_type_ == payload_type) { if (!audio_configured_) { *video_type = video_->VideoCodecType(); } return 0; } std::map::iterator it = payload_type_map_.find(payload_type); if (it == payload_type_map_.end()) { WEBRTC_TRACE(kTraceError, kTraceRtpRtcp, id_, "\tpayloadType:%d not registered", payload_type); return -1; } payload_type_ = payload_type; ModuleRTPUtility::Payload *payload = it->second; assert(payload); if (!payload->audio && !audio_configured_) { video_->SetVideoCodecType(payload->typeSpecific.Video.videoCodecType); *video_type = payload->typeSpecific.Video.videoCodecType; video_->SetMaxConfiguredBitrateVideo(payload->typeSpecific.Video.maxRate); } return 0; } int32_t RTPSender::SendOutgoingData( const FrameType frame_type, const int8_t payload_type, const uint32_t capture_timestamp, int64_t capture_time_ms, const uint8_t *payload_data, const uint32_t payload_size, const RTPFragmentationHeader *fragmentation, VideoCodecInformation *codec_info, const RTPVideoTypeHeader *rtp_type_hdr) { { // Drop this packet if we're not sending media packets. CriticalSectionScoped cs(send_critsect_); if (!sending_media_) { return 0; } } RtpVideoCodecTypes video_type = kRtpVideoGeneric; if (CheckPayloadType(payload_type, &video_type) != 0) { WEBRTC_TRACE(kTraceError, kTraceRtpRtcp, id_, "%s invalid argument failed to find payload_type:%d", __FUNCTION__, payload_type); return -1; } if (audio_configured_) { TRACE_EVENT_ASYNC_STEP1("webrtc", "Audio", capture_timestamp, "Send", "type", FrameTypeToString(frame_type)); assert(frame_type == kAudioFrameSpeech || frame_type == kAudioFrameCN || frame_type == kFrameEmpty); return audio_->SendAudio(frame_type, payload_type, capture_timestamp, payload_data, payload_size, fragmentation); } else { TRACE_EVENT_ASYNC_STEP1("webrtc", "Video", capture_time_ms, "Send", "type", FrameTypeToString(frame_type)); assert(frame_type != kAudioFrameSpeech && frame_type != kAudioFrameCN); if (frame_type == kFrameEmpty) { if (paced_sender_->Enabled()) { // Padding is driven by the pacer and not by the encoder. return 0; } return SendPaddingAccordingToBitrate(payload_type, capture_timestamp, capture_time_ms) ? 0 : -1; } return video_->SendVideo(video_type, frame_type, payload_type, capture_timestamp, capture_time_ms, payload_data, payload_size, fragmentation, codec_info, rtp_type_hdr); } } bool RTPSender::SendPaddingAccordingToBitrate( int8_t payload_type, uint32_t capture_timestamp, int64_t capture_time_ms) { // Current bitrate since last estimate(1 second) averaged with the // estimate since then, to get the most up to date bitrate. uint32_t current_bitrate = BitrateNow(); int bitrate_diff = target_send_bitrate_ * 1000 - current_bitrate; if (bitrate_diff <= 0) { return true; } int bytes = 0; if (current_bitrate == 0) { // Start up phase. Send one 33.3 ms batch to start with. bytes = (bitrate_diff / 8) / 30; } else { bytes = (bitrate_diff / 8); // Cap at 200 ms of target send data. int bytes_cap = target_send_bitrate_ * 25; // 1000 / 8 / 5. if (bytes > bytes_cap) { bytes = bytes_cap; } } uint32_t timestamp; { CriticalSectionScoped cs(send_critsect_); // Add the random RTP timestamp offset and store the capture time for // later calculation of the send time offset. timestamp = start_time_stamp_ + capture_timestamp; timestamp_ = timestamp; capture_time_ms_ = capture_time_ms; } int bytes_sent = SendPadData(payload_type, timestamp, capture_time_ms, bytes, kDontRetransmit, false, false); // We did not manage to send all bytes. Comparing with 31 due to modulus 32. return bytes - bytes_sent < 31; } int RTPSender::BuildPaddingPacket(uint8_t* packet, int header_length, int32_t bytes) { int padding_bytes_in_packet = kMaxPaddingLength; if (bytes < kMaxPaddingLength) { padding_bytes_in_packet = bytes; } packet[0] |= 0x20; // Set padding bit. int32_t *data = reinterpret_cast(&(packet[header_length])); // Fill data buffer with random data. for (int j = 0; j < (padding_bytes_in_packet >> 2); ++j) { data[j] = rand(); // NOLINT } // Set number of padding bytes in the last byte of the packet. packet[header_length + padding_bytes_in_packet - 1] = padding_bytes_in_packet; return padding_bytes_in_packet; } int RTPSender::SendPadData(int payload_type, uint32_t timestamp, int64_t capture_time_ms, int32_t bytes, StorageType store, bool force_full_size_packets, bool only_pad_after_markerbit) { // Drop this packet if we're not sending media packets. if (!sending_media_) { return bytes; } int padding_bytes_in_packet = 0; int bytes_sent = 0; for (; bytes > 0; bytes -= padding_bytes_in_packet) { // Always send full padding packets. if (force_full_size_packets && bytes < kMaxPaddingLength) bytes = kMaxPaddingLength; if (bytes < kMaxPaddingLength) { if (force_full_size_packets) { bytes = kMaxPaddingLength; } else { // Round to the nearest multiple of 32. bytes = (bytes + 16) & 0xffe0; } } if (bytes < 32) { // Sanity don't send empty packets. break; } uint32_t ssrc; uint16_t sequence_number; { CriticalSectionScoped cs(send_critsect_); // Only send padding packets following the last packet of a frame, // indicated by the marker bit. if (only_pad_after_markerbit && !last_packet_marker_bit_) return bytes_sent; if (rtx_ == kRtxOff) { ssrc = ssrc_; sequence_number = sequence_number_; ++sequence_number_; } else { ssrc = ssrc_rtx_; sequence_number = sequence_number_rtx_; ++sequence_number_rtx_; } } uint8_t padding_packet[IP_PACKET_SIZE]; int header_length = CreateRTPHeader(padding_packet, payload_type, ssrc, false, timestamp, sequence_number, NULL, 0); padding_bytes_in_packet = BuildPaddingPacket(padding_packet, header_length, bytes); if (0 > SendToNetwork(padding_packet, padding_bytes_in_packet, header_length, capture_time_ms, store, PacedSender::kLowPriority)) { // Error sending the packet. break; } bytes_sent += padding_bytes_in_packet; } return bytes_sent; } void RTPSender::SetStorePacketsStatus(const bool enable, const uint16_t number_to_store) { packet_history_->SetStorePacketsStatus(enable, number_to_store); } bool RTPSender::StorePackets() const { return packet_history_->StorePackets(); } int32_t RTPSender::ReSendPacket(uint16_t packet_id, uint32_t min_resend_time) { uint16_t length = IP_PACKET_SIZE; uint8_t data_buffer[IP_PACKET_SIZE]; uint8_t *buffer_to_send_ptr = data_buffer; int64_t capture_time_ms; StorageType type; if (!packet_history_->GetRTPPacket(packet_id, min_resend_time, data_buffer, &length, &capture_time_ms, &type)) { // Packet not found. return 0; } if (length == 0 || type == kDontRetransmit) { // No bytes copied (packet recently resent, skip resending) or // packet should not be retransmitted. return 0; } uint8_t data_buffer_rtx[IP_PACKET_SIZE]; if (rtx_ != kRtxOff) { BuildRtxPacket(data_buffer, &length, data_buffer_rtx); buffer_to_send_ptr = data_buffer_rtx; } ModuleRTPUtility::RTPHeaderParser rtp_parser(data_buffer, length); RTPHeader header; rtp_parser.Parse(header); // Store the time when the packet was last sent or added to pacer. packet_history_->UpdateResendTime(packet_id); { // Update send statistics prior to pacer. CriticalSectionScoped lock(statistics_crit_.get()); Bitrate::Update(length); ++packets_sent_; // We on purpose don't add to payload_bytes_sent_ since this is a // re-transmit and not new payload data. } TRACE_EVENT_INSTANT2("webrtc_rtp", "RTPSender::ReSendPacket", "timestamp", header.timestamp, "seqnum", header.sequenceNumber); if (paced_sender_) { if (!paced_sender_->SendPacket(PacedSender::kHighPriority, header.ssrc, header.sequenceNumber, capture_time_ms, length - header.headerLength)) { // We can't send the packet right now. // We will be called when it is time. return length; } } if (SendPacketToNetwork(buffer_to_send_ptr, length)) { return length; } return -1; } bool RTPSender::SendPacketToNetwork(const uint8_t *packet, uint32_t size) { int bytes_sent = -1; if (transport_) { bytes_sent = transport_->SendPacket(id_, packet, size); } TRACE_EVENT_INSTANT2("webrtc_rtp", "RTPSender::SendPacketToNetwork", "size", size, "sent", bytes_sent); // TODO(pwesin): Add a separate bitrate for sent bitrate after pacer. if (bytes_sent <= 0) { WEBRTC_TRACE(kTraceWarning, kTraceRtpRtcp, id_, "Transport failed to send packet"); return false; } return true; } int RTPSender::SelectiveRetransmissions() const { if (!video_) return -1; return video_->SelectiveRetransmissions(); } int RTPSender::SetSelectiveRetransmissions(uint8_t settings) { if (!video_) return -1; return video_->SetSelectiveRetransmissions(settings); } void RTPSender::OnReceivedNACK( const std::list& nack_sequence_numbers, const uint16_t avg_rtt) { TRACE_EVENT2("webrtc_rtp", "RTPSender::OnReceivedNACK", "num_seqnum", nack_sequence_numbers.size(), "avg_rtt", avg_rtt); const int64_t now = clock_->TimeInMilliseconds(); uint32_t bytes_re_sent = 0; // Enough bandwidth to send NACK? if (!ProcessNACKBitRate(now)) { WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, id_, "NACK bitrate reached. Skip sending NACK response. Target %d", target_send_bitrate_); return; } for (std::list::const_iterator it = nack_sequence_numbers.begin(); it != nack_sequence_numbers.end(); ++it) { const int32_t bytes_sent = ReSendPacket(*it, 5 + avg_rtt); if (bytes_sent > 0) { bytes_re_sent += bytes_sent; } else if (bytes_sent == 0) { // The packet has previously been resent. // Try resending next packet in the list. continue; } else if (bytes_sent < 0) { // Failed to send one Sequence number. Give up the rest in this nack. WEBRTC_TRACE(kTraceWarning, kTraceRtpRtcp, id_, "Failed resending RTP packet %d, Discard rest of packets", *it); break; } // Delay bandwidth estimate (RTT * BW). if (target_send_bitrate_ != 0 && avg_rtt) { // kbits/s * ms = bits => bits/8 = bytes uint32_t target_bytes = (static_cast(target_send_bitrate_) * avg_rtt) >> 3; if (bytes_re_sent > target_bytes) { break; // Ignore the rest of the packets in the list. } } } if (bytes_re_sent > 0) { // TODO(pwestin) consolidate these two methods. UpdateNACKBitRate(bytes_re_sent, now); nack_bitrate_.Update(bytes_re_sent); } } bool RTPSender::ProcessNACKBitRate(const uint32_t now) { uint32_t num = 0; int32_t byte_count = 0; const uint32_t avg_interval = 1000; CriticalSectionScoped cs(send_critsect_); if (target_send_bitrate_ == 0) { return true; } for (num = 0; num < NACK_BYTECOUNT_SIZE; ++num) { if ((now - nack_byte_count_times_[num]) > avg_interval) { // Don't use data older than 1sec. break; } else { byte_count += nack_byte_count_[num]; } } int32_t time_interval = avg_interval; if (num == NACK_BYTECOUNT_SIZE) { // More than NACK_BYTECOUNT_SIZE nack messages has been received // during the last msg_interval. time_interval = now - nack_byte_count_times_[num - 1]; if (time_interval < 0) { time_interval = avg_interval; } } return (byte_count * 8) < (target_send_bitrate_ * time_interval); } void RTPSender::UpdateNACKBitRate(const uint32_t bytes, const uint32_t now) { CriticalSectionScoped cs(send_critsect_); // Save bitrate statistics. if (bytes > 0) { if (now == 0) { // Add padding length. nack_byte_count_[0] += bytes; } else { if (nack_byte_count_times_[0] == 0) { // First no shift. } else { // Shift. for (int i = (NACK_BYTECOUNT_SIZE - 2); i >= 0; i--) { nack_byte_count_[i + 1] = nack_byte_count_[i]; nack_byte_count_times_[i + 1] = nack_byte_count_times_[i]; } } nack_byte_count_[0] = bytes; nack_byte_count_times_[0] = now; } } } // Called from pacer when we can send the packet. bool RTPSender::TimeToSendPacket(uint16_t sequence_number, int64_t capture_time_ms) { StorageType type; uint16_t length = IP_PACKET_SIZE; uint8_t data_buffer[IP_PACKET_SIZE]; int64_t stored_time_ms; if (packet_history_ == NULL) { // Packet cannot be found. Allow sending to continue. return true; } if (!packet_history_->GetRTPPacket(sequence_number, 0, data_buffer, &length, &stored_time_ms, &type)) { // Packet cannot be found. Allow sending to continue. return true; } assert(length > 0); ModuleRTPUtility::RTPHeaderParser rtp_parser(data_buffer, length); RTPHeader rtp_header; rtp_parser.Parse(rtp_header); TRACE_EVENT_INSTANT2("webrtc_rtp", "RTPSender::TimeToSendPacket", "timestamp", rtp_header.timestamp, "seqnum", sequence_number); int64_t now_ms = clock_->TimeInMilliseconds(); int64_t diff_ms = now_ms - capture_time_ms; bool updated_transmission_time_offset = UpdateTransmissionTimeOffset(data_buffer, length, rtp_header, diff_ms); bool updated_abs_send_time = UpdateAbsoluteSendTime(data_buffer, length, rtp_header, now_ms); if (updated_transmission_time_offset || updated_abs_send_time) { // Update stored packet in case of receiving a re-transmission request. packet_history_->ReplaceRTPHeader(data_buffer, rtp_header.sequenceNumber, rtp_header.headerLength); } return SendPacketToNetwork(data_buffer, length); } int RTPSender::TimeToSendPadding(int bytes) { if (!sending_media_) { return 0; } int payload_type; int64_t capture_time_ms; uint32_t timestamp; { CriticalSectionScoped cs(send_critsect_); payload_type = (rtx_ == kRtxOff) ? payload_type_ : payload_type_rtx_; timestamp = timestamp_; capture_time_ms = capture_time_ms_; } return SendPadData(payload_type, timestamp, capture_time_ms, bytes, kDontStore, true, true); } // TODO(pwestin): send in the RTPHeaderParser to avoid parsing it again. int32_t RTPSender::SendToNetwork( uint8_t *buffer, int payload_length, int rtp_header_length, int64_t capture_time_ms, StorageType storage, PacedSender::Priority priority) { ModuleRTPUtility::RTPHeaderParser rtp_parser( buffer, payload_length + rtp_header_length); RTPHeader rtp_header; rtp_parser.Parse(rtp_header); int64_t now_ms = clock_->TimeInMilliseconds(); // |capture_time_ms| <= 0 is considered invalid. // TODO(holmer): This should be changed all over Video Engine so that negative // time is consider invalid, while 0 is considered a valid time. if (capture_time_ms > 0) { UpdateTransmissionTimeOffset(buffer, payload_length + rtp_header_length, rtp_header, now_ms - capture_time_ms); } UpdateAbsoluteSendTime(buffer, payload_length + rtp_header_length, rtp_header, now_ms); // Used for NACK and to spread out the transmission of packets. if (packet_history_->PutRTPPacket(buffer, rtp_header_length + payload_length, max_payload_length_, capture_time_ms, storage) != 0) { return -1; } // Create and send RTX Packet. // TODO(pwesin): This should be moved to its own code path triggered by pacer. bool rtx_sent = false; if (rtx_ == kRtxAll && storage == kAllowRetransmission) { uint16_t length_rtx = payload_length + rtp_header_length; uint8_t data_buffer_rtx[IP_PACKET_SIZE]; BuildRtxPacket(buffer, &length_rtx, data_buffer_rtx); if (!SendPacketToNetwork(data_buffer_rtx, length_rtx)) return -1; rtx_sent = true; } { // Update send statistics prior to pacer. CriticalSectionScoped lock(statistics_crit_.get()); Bitrate::Update(payload_length + rtp_header_length); ++packets_sent_; payload_bytes_sent_ += payload_length; if (rtx_sent) { // The RTX packet. ++packets_sent_; payload_bytes_sent_ += payload_length; } } if (paced_sender_ && storage != kDontStore) { if (!paced_sender_->SendPacket(priority, rtp_header.ssrc, rtp_header.sequenceNumber, capture_time_ms, payload_length)) { // We can't send the packet right now. // We will be called when it is time. return 0; } } if (SendPacketToNetwork(buffer, payload_length + rtp_header_length)) { return 0; } return -1; } void RTPSender::ProcessBitrate() { CriticalSectionScoped cs(send_critsect_); Bitrate::Process(); nack_bitrate_.Process(); if (audio_configured_) { return; } video_->ProcessBitrate(); } uint16_t RTPSender::RTPHeaderLength() const { uint16_t rtp_header_length = 12; if (include_csrcs_) { rtp_header_length += sizeof(uint32_t) * num_csrcs_; } rtp_header_length += RtpHeaderExtensionTotalLength(); return rtp_header_length; } uint16_t RTPSender::IncrementSequenceNumber() { CriticalSectionScoped cs(send_critsect_); return sequence_number_++; } void RTPSender::ResetDataCounters() { CriticalSectionScoped lock(statistics_crit_.get()); packets_sent_ = 0; payload_bytes_sent_ = 0; } uint32_t RTPSender::Packets() const { CriticalSectionScoped lock(statistics_crit_.get()); return packets_sent_; } // Number of sent RTP bytes. uint32_t RTPSender::Bytes() const { CriticalSectionScoped lock(statistics_crit_.get()); return payload_bytes_sent_; } int RTPSender::CreateRTPHeader( uint8_t* header, int8_t payload_type, uint32_t ssrc, bool marker_bit, uint32_t timestamp, uint16_t sequence_number, const uint32_t* csrcs, uint8_t num_csrcs) const { header[0] = 0x80; // version 2. header[1] = static_cast(payload_type); if (marker_bit) { header[1] |= kRtpMarkerBitMask; // Marker bit is set. } ModuleRTPUtility::AssignUWord16ToBuffer(header + 2, sequence_number); ModuleRTPUtility::AssignUWord32ToBuffer(header + 4, timestamp); ModuleRTPUtility::AssignUWord32ToBuffer(header + 8, ssrc); int32_t rtp_header_length = 12; // Add the CSRCs if any. if (num_csrcs > 0) { if (num_csrcs > kRtpCsrcSize) { // error assert(false); return -1; } uint8_t *ptr = &header[rtp_header_length]; for (int i = 0; i < num_csrcs; ++i) { ModuleRTPUtility::AssignUWord32ToBuffer(ptr, csrcs[i]); ptr += 4; } header[0] = (header[0] & 0xf0) | num_csrcs; // Update length of header. rtp_header_length += sizeof(uint32_t) * num_csrcs; } uint16_t len = BuildRTPHeaderExtension(header + rtp_header_length); if (len > 0) { header[0] |= 0x10; // Set extension bit. rtp_header_length += len; } return rtp_header_length; } int32_t RTPSender::BuildRTPheader( uint8_t *data_buffer, const int8_t payload_type, const bool marker_bit, const uint32_t capture_timestamp, int64_t capture_time_ms, const bool time_stamp_provided, const bool inc_sequence_number) { assert(payload_type >= 0); CriticalSectionScoped cs(send_critsect_); if (time_stamp_provided) { timestamp_ = start_time_stamp_ + capture_timestamp; } else { // Make a unique time stamp. // We can't inc by the actual time, since then we increase the risk of back // timing. timestamp_++; } uint32_t sequence_number = sequence_number_++; capture_time_ms_ = capture_time_ms; last_packet_marker_bit_ = marker_bit; int csrcs_length = 0; if (include_csrcs_) csrcs_length = num_csrcs_; return CreateRTPHeader(data_buffer, payload_type, ssrc_, marker_bit, timestamp_, sequence_number, csrcs_, csrcs_length); } uint16_t RTPSender::BuildRTPHeaderExtension(uint8_t* data_buffer) const { if (rtp_header_extension_map_.Size() <= 0) { return 0; } // RTP header extension, RFC 3550. // 0 1 2 3 // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // | defined by profile | length | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // | header extension | // | .... | // const uint32_t kPosLength = 2; const uint32_t kHeaderLength = kRtpOneByteHeaderLength; // Add extension ID (0xBEDE). ModuleRTPUtility::AssignUWord16ToBuffer(data_buffer, kRtpOneByteHeaderExtensionId); // Add extensions. uint16_t total_block_length = 0; RTPExtensionType type = rtp_header_extension_map_.First(); while (type != kRtpExtensionNone) { uint8_t block_length = 0; switch (type) { case kRtpExtensionTransmissionTimeOffset: block_length = BuildTransmissionTimeOffsetExtension( data_buffer + kHeaderLength + total_block_length); break; case kRtpExtensionAudioLevel: // Because AudioLevel is handled specially by RTPSenderAudio, we pretend // we don't have to care about it here, which is true until we wan't to // use it together with any of the other extensions we support. break; case kRtpExtensionAbsoluteSendTime: block_length = BuildAbsoluteSendTimeExtension( data_buffer + kHeaderLength + total_block_length); break; default: assert(false); } total_block_length += block_length; type = rtp_header_extension_map_.Next(type); } if (total_block_length == 0) { // No extension added. return 0; } // Set header length (in number of Word32, header excluded). assert(total_block_length % 4 == 0); ModuleRTPUtility::AssignUWord16ToBuffer(data_buffer + kPosLength, total_block_length / 4); // Total added length. return kHeaderLength + total_block_length; } uint8_t RTPSender::BuildTransmissionTimeOffsetExtension( uint8_t* data_buffer) const { // From RFC 5450: Transmission Time Offsets in RTP Streams. // // The transmission time is signaled to the receiver in-band using the // general mechanism for RTP header extensions [RFC5285]. The payload // of this extension (the transmitted value) is a 24-bit signed integer. // When added to the RTP timestamp of the packet, it represents the // "effective" RTP transmission time of the packet, on the RTP // timescale. // // The form of the transmission offset extension block: // // 0 1 2 3 // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // | ID | len=2 | transmission offset | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // Get id defined by user. uint8_t id; if (rtp_header_extension_map_.GetId(kRtpExtensionTransmissionTimeOffset, &id) != 0) { // Not registered. return 0; } size_t pos = 0; const uint8_t len = 2; data_buffer[pos++] = (id << 4) + len; ModuleRTPUtility::AssignUWord24ToBuffer(data_buffer + pos, transmission_time_offset_); pos += 3; assert(pos == kTransmissionTimeOffsetLength); return kTransmissionTimeOffsetLength; } uint8_t RTPSender::BuildAbsoluteSendTimeExtension( uint8_t* data_buffer) const { // Absolute send time in RTP streams. // // The absolute send time is signaled to the receiver in-band using the // general mechanism for RTP header extensions [RFC5285]. The payload // of this extension (the transmitted value) is a 24-bit unsigned integer // containing the sender's current time in seconds as a fixed point number // with 18 bits fractional part. // // The form of the absolute send time extension block: // // 0 1 2 3 // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // | ID | len=2 | absolute send time | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // Get id defined by user. uint8_t id; if (rtp_header_extension_map_.GetId(kRtpExtensionAbsoluteSendTime, &id) != 0) { // Not registered. return 0; } size_t pos = 0; const uint8_t len = 2; data_buffer[pos++] = (id << 4) + len; ModuleRTPUtility::AssignUWord24ToBuffer(data_buffer + pos, absolute_send_time_); pos += 3; assert(pos == kAbsoluteSendTimeLength); return kAbsoluteSendTimeLength; } bool RTPSender::UpdateTransmissionTimeOffset( uint8_t *rtp_packet, const uint16_t rtp_packet_length, const RTPHeader &rtp_header, const int64_t time_diff_ms) const { CriticalSectionScoped cs(send_critsect_); // Get length until start of header extension block. int extension_block_pos = rtp_header_extension_map_.GetLengthUntilBlockStartInBytes( kRtpExtensionTransmissionTimeOffset); if (extension_block_pos < 0) { WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, id_, "Failed to update transmission time offset, not registered."); return false; } int block_pos = 12 + rtp_header.numCSRCs + extension_block_pos; if (rtp_packet_length < block_pos + kTransmissionTimeOffsetLength || rtp_header.headerLength < block_pos + kTransmissionTimeOffsetLength) { WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, id_, "Failed to update transmission time offset, invalid length."); return false; } // Verify that header contains extension. if (!((rtp_packet[12 + rtp_header.numCSRCs] == 0xBE) && (rtp_packet[12 + rtp_header.numCSRCs + 1] == 0xDE))) { WEBRTC_TRACE( kTraceStream, kTraceRtpRtcp, id_, "Failed to update transmission time offset, hdr extension not found."); return false; } // Get id. uint8_t id = 0; if (rtp_header_extension_map_.GetId(kRtpExtensionTransmissionTimeOffset, &id) != 0) { WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, id_, "Failed to update transmission time offset, no id."); return false; } // Verify first byte in block. const uint8_t first_block_byte = (id << 4) + 2; if (rtp_packet[block_pos] != first_block_byte) { WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, id_, "Failed to update transmission time offset."); return false; } // Update transmission offset field (converting to a 90 kHz timestamp). ModuleRTPUtility::AssignUWord24ToBuffer(rtp_packet + block_pos + 1, time_diff_ms * 90); // RTP timestamp. return true; } bool RTPSender::UpdateAbsoluteSendTime( uint8_t *rtp_packet, const uint16_t rtp_packet_length, const RTPHeader &rtp_header, const int64_t now_ms) const { CriticalSectionScoped cs(send_critsect_); // Get length until start of header extension block. int extension_block_pos = rtp_header_extension_map_.GetLengthUntilBlockStartInBytes( kRtpExtensionAbsoluteSendTime); if (extension_block_pos < 0) { WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, id_, "Failed to update absolute send time, not registered."); return false; } int block_pos = 12 + rtp_header.numCSRCs + extension_block_pos; if (rtp_packet_length < block_pos + kAbsoluteSendTimeLength || rtp_header.headerLength < block_pos + kAbsoluteSendTimeLength) { WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, id_, "Failed to update absolute send time, invalid length."); return false; } // Verify that header contains extension. if (!((rtp_packet[12 + rtp_header.numCSRCs] == 0xBE) && (rtp_packet[12 + rtp_header.numCSRCs + 1] == 0xDE))) { WEBRTC_TRACE( kTraceStream, kTraceRtpRtcp, id_, "Failed to update absolute send time, hdr extension not found."); return false; } // Get id. uint8_t id = 0; if (rtp_header_extension_map_.GetId(kRtpExtensionAbsoluteSendTime, &id) != 0) { WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, id_, "Failed to update absolute send time, no id."); return false; } // Verify first byte in block. const uint8_t first_block_byte = (id << 4) + 2; if (rtp_packet[block_pos] != first_block_byte) { WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, id_, "Failed to update absolute send time."); return false; } // Update absolute send time field (convert ms to 24-bit unsigned with 18 bit // fractional part). ModuleRTPUtility::AssignUWord24ToBuffer(rtp_packet + block_pos + 1, ((now_ms << 18) / 1000) & 0x00ffffff); return true; } void RTPSender::SetSendingStatus(bool enabled) { if (enabled) { uint32_t frequency_hz = SendPayloadFrequency(); uint32_t RTPtime = ModuleRTPUtility::GetCurrentRTP(clock_, frequency_hz); // Will be ignored if it's already configured via API. SetStartTimestamp(RTPtime, false); } else { if (!ssrc_forced_) { // Generate a new SSRC. ssrc_db_.ReturnSSRC(ssrc_); ssrc_ = ssrc_db_.CreateSSRC(); // Can't be 0. } // Don't initialize seq number if SSRC passed externally. if (!sequence_number_forced_ && !ssrc_forced_) { // Generate a new sequence number. sequence_number_ = rand() / (RAND_MAX / MAX_INIT_RTP_SEQ_NUMBER); // NOLINT } } } void RTPSender::SetSendingMediaStatus(const bool enabled) { CriticalSectionScoped cs(send_critsect_); sending_media_ = enabled; } bool RTPSender::SendingMedia() const { CriticalSectionScoped cs(send_critsect_); return sending_media_; } uint32_t RTPSender::Timestamp() const { CriticalSectionScoped cs(send_critsect_); return timestamp_; } void RTPSender::SetStartTimestamp(uint32_t timestamp, bool force) { CriticalSectionScoped cs(send_critsect_); if (force) { start_time_stamp_forced_ = force; start_time_stamp_ = timestamp; } else { if (!start_time_stamp_forced_) { start_time_stamp_ = timestamp; } } } uint32_t RTPSender::StartTimestamp() const { CriticalSectionScoped cs(send_critsect_); return start_time_stamp_; } uint32_t RTPSender::GenerateNewSSRC() { // If configured via API, return 0. CriticalSectionScoped cs(send_critsect_); if (ssrc_forced_) { return 0; } ssrc_ = ssrc_db_.CreateSSRC(); // Can't be 0. return ssrc_; } void RTPSender::SetSSRC(uint32_t ssrc) { // This is configured via the API. CriticalSectionScoped cs(send_critsect_); if (ssrc_ == ssrc && ssrc_forced_) { return; // Since it's same ssrc, don't reset anything. } ssrc_forced_ = true; ssrc_db_.ReturnSSRC(ssrc_); ssrc_db_.RegisterSSRC(ssrc); ssrc_ = ssrc; if (!sequence_number_forced_) { sequence_number_ = rand() / (RAND_MAX / MAX_INIT_RTP_SEQ_NUMBER); // NOLINT } } uint32_t RTPSender::SSRC() const { CriticalSectionScoped cs(send_critsect_); return ssrc_; } void RTPSender::SetCSRCStatus(const bool include) { include_csrcs_ = include; } void RTPSender::SetCSRCs(const uint32_t arr_of_csrc[kRtpCsrcSize], const uint8_t arr_length) { assert(arr_length <= kRtpCsrcSize); CriticalSectionScoped cs(send_critsect_); for (int i = 0; i < arr_length; i++) { csrcs_[i] = arr_of_csrc[i]; } num_csrcs_ = arr_length; } int32_t RTPSender::CSRCs(uint32_t arr_of_csrc[kRtpCsrcSize]) const { assert(arr_of_csrc); CriticalSectionScoped cs(send_critsect_); for (int i = 0; i < num_csrcs_ && i < kRtpCsrcSize; i++) { arr_of_csrc[i] = csrcs_[i]; } return num_csrcs_; } void RTPSender::SetSequenceNumber(uint16_t seq) { CriticalSectionScoped cs(send_critsect_); sequence_number_forced_ = true; sequence_number_ = seq; } uint16_t RTPSender::SequenceNumber() const { CriticalSectionScoped cs(send_critsect_); return sequence_number_; } // Audio. int32_t RTPSender::SendTelephoneEvent(const uint8_t key, const uint16_t time_ms, const uint8_t level) { if (!audio_configured_) { return -1; } return audio_->SendTelephoneEvent(key, time_ms, level); } bool RTPSender::SendTelephoneEventActive(int8_t *telephone_event) const { if (!audio_configured_) { return false; } return audio_->SendTelephoneEventActive(*telephone_event); } int32_t RTPSender::SetAudioPacketSize( const uint16_t packet_size_samples) { if (!audio_configured_) { return -1; } return audio_->SetAudioPacketSize(packet_size_samples); } int32_t RTPSender::SetAudioLevelIndicationStatus(const bool enable, const uint8_t ID) { if (!audio_configured_) { return -1; } return audio_->SetAudioLevelIndicationStatus(enable, ID); } int32_t RTPSender::AudioLevelIndicationStatus(bool *enable, uint8_t* id) const { return audio_->AudioLevelIndicationStatus(*enable, *id); } int32_t RTPSender::SetAudioLevel(const uint8_t level_d_bov) { return audio_->SetAudioLevel(level_d_bov); } int32_t RTPSender::SetRED(const int8_t payload_type) { if (!audio_configured_) { return -1; } return audio_->SetRED(payload_type); } int32_t RTPSender::RED(int8_t *payload_type) const { if (!audio_configured_) { return -1; } return audio_->RED(*payload_type); } // Video VideoCodecInformation *RTPSender::CodecInformationVideo() { if (audio_configured_) { return NULL; } return video_->CodecInformationVideo(); } RtpVideoCodecTypes RTPSender::VideoCodecType() const { assert(!audio_configured_ && "Sender is an audio stream!"); return video_->VideoCodecType(); } uint32_t RTPSender::MaxConfiguredBitrateVideo() const { if (audio_configured_) { return 0; } return video_->MaxConfiguredBitrateVideo(); } int32_t RTPSender::SendRTPIntraRequest() { if (audio_configured_) { return -1; } return video_->SendRTPIntraRequest(); } int32_t RTPSender::SetGenericFECStatus( const bool enable, const uint8_t payload_type_red, const uint8_t payload_type_fec) { if (audio_configured_) { return -1; } return video_->SetGenericFECStatus(enable, payload_type_red, payload_type_fec); } int32_t RTPSender::GenericFECStatus( bool *enable, uint8_t *payload_type_red, uint8_t *payload_type_fec) const { if (audio_configured_) { return -1; } return video_->GenericFECStatus( *enable, *payload_type_red, *payload_type_fec); } int32_t RTPSender::SetFecParameters( const FecProtectionParams *delta_params, const FecProtectionParams *key_params) { if (audio_configured_) { return -1; } return video_->SetFecParameters(delta_params, key_params); } void RTPSender::BuildRtxPacket(uint8_t* buffer, uint16_t* length, uint8_t* buffer_rtx) { CriticalSectionScoped cs(send_critsect_); uint8_t* data_buffer_rtx = buffer_rtx; // Add RTX header. ModuleRTPUtility::RTPHeaderParser rtp_parser( reinterpret_cast(buffer), *length); RTPHeader rtp_header; rtp_parser.Parse(rtp_header); // Add original RTP header. memcpy(data_buffer_rtx, buffer, rtp_header.headerLength); // Replace payload type, if a specific type is set for RTX. if (payload_type_rtx_ != -1) { data_buffer_rtx[1] = static_cast(payload_type_rtx_); if (rtp_header.markerBit) data_buffer_rtx[1] |= kRtpMarkerBitMask; } // Replace sequence number. uint8_t *ptr = data_buffer_rtx + 2; ModuleRTPUtility::AssignUWord16ToBuffer(ptr, sequence_number_rtx_++); // Replace SSRC. ptr += 6; ModuleRTPUtility::AssignUWord32ToBuffer(ptr, ssrc_rtx_); // Add OSN (original sequence number). ptr = data_buffer_rtx + rtp_header.headerLength; ModuleRTPUtility::AssignUWord16ToBuffer(ptr, rtp_header.sequenceNumber); ptr += 2; // Add original payload data. memcpy(ptr, buffer + rtp_header.headerLength, *length - rtp_header.headerLength); *length += 2; } } // namespace webrtc