/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/audio_buffer.h" #include #include #include "common_audio/channel_buffer.h" #include "common_audio/include/audio_util.h" #include "common_audio/resampler/push_sinc_resampler.h" #include "modules/audio_processing/splitting_filter.h" #include "rtc_base/checks.h" namespace webrtc { namespace { const size_t kSamplesPer16kHzChannel = 160; const size_t kSamplesPer32kHzChannel = 320; const size_t kSamplesPer48kHzChannel = 480; size_t NumBandsFromSamplesPerChannel(size_t num_frames) { size_t num_bands = 1; if (num_frames == kSamplesPer32kHzChannel || num_frames == kSamplesPer48kHzChannel) { num_bands = rtc::CheckedDivExact(num_frames, kSamplesPer16kHzChannel); } return num_bands; } } // namespace AudioBuffer::AudioBuffer(size_t input_num_frames, size_t num_input_channels, size_t process_num_frames, size_t num_process_channels, size_t output_num_frames) : input_num_frames_(input_num_frames), num_input_channels_(num_input_channels), proc_num_frames_(process_num_frames), num_proc_channels_(num_process_channels), output_num_frames_(output_num_frames), num_channels_(num_process_channels), num_bands_(NumBandsFromSamplesPerChannel(proc_num_frames_)), num_split_frames_(rtc::CheckedDivExact(proc_num_frames_, num_bands_)), data_(new IFChannelBuffer(proc_num_frames_, num_proc_channels_)), output_buffer_(new IFChannelBuffer(output_num_frames_, num_channels_)) { RTC_DCHECK_GT(input_num_frames_, 0); RTC_DCHECK_GT(proc_num_frames_, 0); RTC_DCHECK_GT(output_num_frames_, 0); RTC_DCHECK_GT(num_input_channels_, 0); RTC_DCHECK_GT(num_proc_channels_, 0); RTC_DCHECK_LE(num_proc_channels_, num_input_channels_); if (input_num_frames_ != proc_num_frames_ || output_num_frames_ != proc_num_frames_) { // Create an intermediate buffer for resampling. process_buffer_.reset( new ChannelBuffer(proc_num_frames_, num_proc_channels_)); if (input_num_frames_ != proc_num_frames_) { for (size_t i = 0; i < num_proc_channels_; ++i) { input_resamplers_.push_back(std::unique_ptr( new PushSincResampler(input_num_frames_, proc_num_frames_))); } } if (output_num_frames_ != proc_num_frames_) { for (size_t i = 0; i < num_proc_channels_; ++i) { output_resamplers_.push_back(std::unique_ptr( new PushSincResampler(proc_num_frames_, output_num_frames_))); } } } if (num_bands_ > 1) { split_data_.reset( new IFChannelBuffer(proc_num_frames_, num_proc_channels_, num_bands_)); splitting_filter_.reset( new SplittingFilter(num_proc_channels_, num_bands_, proc_num_frames_)); } } AudioBuffer::~AudioBuffer() {} void AudioBuffer::CopyFrom(const float* const* data, const StreamConfig& stream_config) { RTC_DCHECK_EQ(stream_config.num_frames(), input_num_frames_); RTC_DCHECK_EQ(stream_config.num_channels(), num_input_channels_); InitForNewData(); // Initialized lazily because there's a different condition in // DeinterleaveFrom. const bool need_to_downmix = num_input_channels_ > 1 && num_proc_channels_ == 1; if (need_to_downmix && !input_buffer_) { input_buffer_.reset( new IFChannelBuffer(input_num_frames_, num_proc_channels_)); } // Downmix. const float* const* data_ptr = data; if (need_to_downmix) { DownmixToMono(data, input_num_frames_, num_input_channels_, input_buffer_->fbuf()->channels()[0]); data_ptr = input_buffer_->fbuf_const()->channels(); } // Resample. if (input_num_frames_ != proc_num_frames_) { for (size_t i = 0; i < num_proc_channels_; ++i) { input_resamplers_[i]->Resample(data_ptr[i], input_num_frames_, process_buffer_->channels()[i], proc_num_frames_); } data_ptr = process_buffer_->channels(); } // Convert to the S16 range. for (size_t i = 0; i < num_proc_channels_; ++i) { FloatToFloatS16(data_ptr[i], proc_num_frames_, data_->fbuf()->channels()[i]); } } void AudioBuffer::CopyTo(const StreamConfig& stream_config, float* const* data) { RTC_DCHECK_EQ(stream_config.num_frames(), output_num_frames_); RTC_DCHECK(stream_config.num_channels() == num_channels_ || num_channels_ == 1); // Convert to the float range. float* const* data_ptr = data; if (output_num_frames_ != proc_num_frames_) { // Convert to an intermediate buffer for subsequent resampling. data_ptr = process_buffer_->channels(); } for (size_t i = 0; i < num_channels_; ++i) { FloatS16ToFloat(data_->fbuf()->channels()[i], proc_num_frames_, data_ptr[i]); } // Resample. if (output_num_frames_ != proc_num_frames_) { for (size_t i = 0; i < num_channels_; ++i) { output_resamplers_[i]->Resample(data_ptr[i], proc_num_frames_, data[i], output_num_frames_); } } // Upmix. for (size_t i = num_channels_; i < stream_config.num_channels(); ++i) { memcpy(data[i], data[0], output_num_frames_ * sizeof(**data)); } } void AudioBuffer::InitForNewData() { num_channels_ = num_proc_channels_; data_->set_num_channels(num_proc_channels_); if (split_data_.get()) { split_data_->set_num_channels(num_proc_channels_); } } const float* const* AudioBuffer::split_channels_const_f(Band band) const { if (split_data_.get()) { return split_data_->fbuf_const()->channels(band); } else { return band == kBand0To8kHz ? data_->fbuf_const()->channels() : nullptr; } } const float* const* AudioBuffer::channels_const_f() const { return data_->fbuf_const()->channels(); } float* const* AudioBuffer::channels_f() { return data_->fbuf()->channels(); } const float* const* AudioBuffer::split_bands_const_f(size_t channel) const { return split_data_.get() ? split_data_->fbuf_const()->bands(channel) : data_->fbuf_const()->bands(channel); } float* const* AudioBuffer::split_bands_f(size_t channel) { return split_data_.get() ? split_data_->fbuf()->bands(channel) : data_->fbuf()->bands(channel); } size_t AudioBuffer::num_channels() const { return num_channels_; } void AudioBuffer::set_num_channels(size_t num_channels) { num_channels_ = num_channels; data_->set_num_channels(num_channels); if (split_data_.get()) { split_data_->set_num_channels(num_channels); } } size_t AudioBuffer::num_frames() const { return proc_num_frames_; } size_t AudioBuffer::num_frames_per_band() const { return num_split_frames_; } size_t AudioBuffer::num_bands() const { return num_bands_; } // The resampler is only for supporting 48kHz to 16kHz in the reverse stream. void AudioBuffer::DeinterleaveFrom(const AudioFrame* frame) { RTC_DCHECK_EQ(frame->num_channels_, num_input_channels_); RTC_DCHECK_EQ(frame->samples_per_channel_, input_num_frames_); InitForNewData(); // Initialized lazily because there's a different condition in CopyFrom. if ((input_num_frames_ != proc_num_frames_) && !input_buffer_) { input_buffer_.reset( new IFChannelBuffer(input_num_frames_, num_proc_channels_)); } int16_t* const* deinterleaved; if (input_num_frames_ == proc_num_frames_) { deinterleaved = data_->ibuf()->channels(); } else { deinterleaved = input_buffer_->ibuf()->channels(); } // TODO(yujo): handle muted frames more efficiently. if (num_proc_channels_ == 1) { // Downmix and deinterleave simultaneously. DownmixInterleavedToMono(frame->data(), input_num_frames_, num_input_channels_, deinterleaved[0]); } else { RTC_DCHECK_EQ(num_proc_channels_, num_input_channels_); Deinterleave(frame->data(), input_num_frames_, num_proc_channels_, deinterleaved); } // Resample. if (input_num_frames_ != proc_num_frames_) { for (size_t i = 0; i < num_proc_channels_; ++i) { input_resamplers_[i]->Resample( input_buffer_->fbuf_const()->channels()[i], input_num_frames_, data_->fbuf()->channels()[i], proc_num_frames_); } } } void AudioBuffer::InterleaveTo(AudioFrame* frame) const { RTC_DCHECK(frame->num_channels_ == num_channels_ || num_channels_ == 1); RTC_DCHECK_EQ(frame->samples_per_channel_, output_num_frames_); // Resample if necessary. IFChannelBuffer* data_ptr = data_.get(); if (proc_num_frames_ != output_num_frames_) { for (size_t i = 0; i < num_channels_; ++i) { output_resamplers_[i]->Resample( data_->fbuf()->channels()[i], proc_num_frames_, output_buffer_->fbuf()->channels()[i], output_num_frames_); } data_ptr = output_buffer_.get(); } // TODO(yujo): handle muted frames more efficiently. if (frame->num_channels_ == num_channels_) { Interleave(data_ptr->ibuf()->channels(), output_num_frames_, num_channels_, frame->mutable_data()); } else { UpmixMonoToInterleaved(data_ptr->ibuf()->channels()[0], output_num_frames_, frame->num_channels_, frame->mutable_data()); } } void AudioBuffer::SplitIntoFrequencyBands() { splitting_filter_->Analysis(data_.get(), split_data_.get()); } void AudioBuffer::MergeFrequencyBands() { splitting_filter_->Synthesis(split_data_.get(), data_.get()); } void AudioBuffer::CopySplitChannelDataTo(size_t channel, int16_t* const* split_band_data) { for (size_t k = 0; k < num_bands(); ++k) { const float* band_data = split_bands_f(channel)[k]; RTC_DCHECK(split_band_data[k]); RTC_DCHECK(band_data); for (size_t i = 0; i < num_frames_per_band(); ++i) { split_band_data[k][i] = FloatS16ToS16(band_data[i]); } } } void AudioBuffer::CopySplitChannelDataFrom( size_t channel, const int16_t* const* split_band_data) { for (size_t k = 0; k < num_bands(); ++k) { float* band_data = split_bands_f(channel)[k]; RTC_DCHECK(split_band_data[k]); RTC_DCHECK(band_data); for (size_t i = 0; i < num_frames_per_band(); ++i) { band_data[i] = split_band_data[k][i]; } } } } // namespace webrtc