/* * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/base/buffer.h" #include "webrtc/modules/audio_coding/codecs/isac/fix/interface/audio_encoder_isacfix.h" #include "webrtc/modules/audio_coding/codecs/isac/main/interface/audio_encoder_isac.h" #include "webrtc/modules/audio_coding/neteq/tools/input_audio_file.h" #include "webrtc/test/testsupport/fileutils.h" namespace webrtc { namespace { std::vector LoadSpeechData() { webrtc::test::InputAudioFile input_file( webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm")); static const int kIsacNumberOfSamples = 32 * 60; // 60 ms at 32 kHz std::vector speech_data(kIsacNumberOfSamples); input_file.Read(kIsacNumberOfSamples, speech_data.data()); return speech_data; } template IsacBandwidthInfo GetBwInfo(typename T::instance_type* inst) { IsacBandwidthInfo bi; T::GetBandwidthInfo(inst, &bi); EXPECT_TRUE(bi.in_use); return bi; } template rtc::Buffer EncodePacket(typename T::instance_type* inst, const IsacBandwidthInfo* bi, const int16_t* speech_data, int framesize_ms) { rtc::Buffer output(1000); for (int i = 0;; ++i) { if (bi) T::SetBandwidthInfo(inst, bi); int encoded_bytes = T::Encode(inst, speech_data, output.data()); if (i + 1 == framesize_ms / 10) { EXPECT_GT(encoded_bytes, 0); EXPECT_LE(static_cast(encoded_bytes), output.size()); output.SetSize(encoded_bytes); return output; } EXPECT_EQ(0, encoded_bytes); } } class BoundedCapacityChannel final { public: BoundedCapacityChannel(int rate_bits_per_second) : current_time_rtp_(0), channel_rate_bytes_per_sample_(rate_bits_per_second / (8.0 * kSamplesPerSecond)) {} // Simulate sending the given number of bytes at the given RTP time. Returns // the new current RTP time after the sending is done. int Send(int send_time_rtp, int nbytes) { current_time_rtp_ = std::max(current_time_rtp_, send_time_rtp) + nbytes / channel_rate_bytes_per_sample_; return current_time_rtp_; } private: int current_time_rtp_; // The somewhat strange unit for channel rate, bytes per sample, is because // RTP time is measured in samples: const double channel_rate_bytes_per_sample_; static const int kSamplesPerSecond = 16000; }; template struct TestParam {}; template <> struct TestParam { static const int time_to_settle = 200; static int ExpectedRateBitsPerSecond(int rate_bits_per_second) { return rate_bits_per_second; } }; template <> struct TestParam { static const int time_to_settle = 350; static int ExpectedRateBitsPerSecond(int rate_bits_per_second) { // For some reason, IsacFix fails to adapt to the channel's actual // bandwidth. Instead, it settles on a few hundred packets at 10kbit/s, // then a few hundred at 5kbit/s, then a few hundred at 10kbit/s, and so // on. The 200 packets starting at 350 are in the middle of the first // 10kbit/s run. return 10000; } }; template <> struct TestParam { static const int time_to_settle = 0; static int ExpectedRateBitsPerSecond(int rate_bits_per_second) { return 32000; } }; template <> struct TestParam { static const int time_to_settle = 0; static int ExpectedRateBitsPerSecond(int rate_bits_per_second) { return 16000; } }; // Test that the iSAC encoder produces identical output whether or not we use a // conjoined encoder+decoder pair or a separate encoder and decoder that // communicate BW estimation info explicitly. template void TestGetSetBandwidthInfo(const int16_t* speech_data, int rate_bits_per_second) { using Param = TestParam; const int framesize_ms = adaptive ? 60 : 30; // Conjoined encoder/decoder pair: typename T::instance_type* encdec; ASSERT_EQ(0, T::Create(&encdec)); ASSERT_EQ(0, T::EncoderInit(encdec, adaptive ? 0 : 1)); ASSERT_EQ(0, T::DecoderInit(encdec)); // Disjoint encoder/decoder pair: typename T::instance_type* enc; ASSERT_EQ(0, T::Create(&enc)); ASSERT_EQ(0, T::EncoderInit(enc, adaptive ? 0 : 1)); typename T::instance_type* dec; ASSERT_EQ(0, T::Create(&dec)); ASSERT_EQ(0, T::DecoderInit(dec)); // 0. Get initial BW info from decoder. auto bi = GetBwInfo(dec); BoundedCapacityChannel channel1(rate_bits_per_second), channel2(rate_bits_per_second); std::vector packet_sizes; for (int i = 0; i < Param::time_to_settle + 200; ++i) { std::ostringstream ss; ss << " i = " << i; SCOPED_TRACE(ss.str()); // 1. Encode 6 * 10 ms (adaptive) or 3 * 10 ms (nonadaptive). The separate // encoder is given the BW info before each encode call. auto bitstream1 = EncodePacket(encdec, nullptr, speech_data, framesize_ms); auto bitstream2 = EncodePacket(enc, &bi, speech_data, framesize_ms); EXPECT_EQ(bitstream1, bitstream2); if (i > Param::time_to_settle) packet_sizes.push_back(bitstream1.size()); // 2. Deliver the encoded data to the decoders (but don't actually ask them // to decode it; that's not necessary). Then get new BW info from the // separate decoder. const int samples_per_packet = 16 * framesize_ms; const int send_time = i * samples_per_packet; EXPECT_EQ(0, T::UpdateBwEstimate( encdec, bitstream1.data(), bitstream1.size(), i, send_time, channel1.Send(send_time, bitstream1.size()))); EXPECT_EQ(0, T::UpdateBwEstimate( dec, bitstream2.data(), bitstream2.size(), i, send_time, channel2.Send(send_time, bitstream2.size()))); bi = GetBwInfo(dec); } EXPECT_EQ(0, T::Free(encdec)); EXPECT_EQ(0, T::Free(enc)); EXPECT_EQ(0, T::Free(dec)); // The average send bitrate is close to the channel's capacity. double avg_size = std::accumulate(packet_sizes.begin(), packet_sizes.end(), 0) / static_cast(packet_sizes.size()); double avg_rate_bits_per_second = 8.0 * avg_size / (framesize_ms * 1e-3); double expected_rate_bits_per_second = Param::ExpectedRateBitsPerSecond(rate_bits_per_second); EXPECT_GT(avg_rate_bits_per_second / expected_rate_bits_per_second, 0.95); EXPECT_LT(avg_rate_bits_per_second / expected_rate_bits_per_second, 1.06); // The largest packet isn't that large, and the smallest not that small. size_t min_size = *std::min_element(packet_sizes.begin(), packet_sizes.end()); size_t max_size = *std::max_element(packet_sizes.begin(), packet_sizes.end()); double size_range = max_size - min_size; EXPECT_LE(size_range / avg_size, 0.16); } } // namespace TEST(IsacCommonTest, GetSetBandwidthInfoFloat12kAdaptive) { TestGetSetBandwidthInfo(LoadSpeechData().data(), 12000); } TEST(IsacCommonTest, GetSetBandwidthInfoFloat15kAdaptive) { TestGetSetBandwidthInfo(LoadSpeechData().data(), 15000); } TEST(IsacCommonTest, GetSetBandwidthInfoFloat19kAdaptive) { TestGetSetBandwidthInfo(LoadSpeechData().data(), 19000); } TEST(IsacCommonTest, GetSetBandwidthInfoFloat22kAdaptive) { TestGetSetBandwidthInfo(LoadSpeechData().data(), 22000); } TEST(IsacCommonTest, GetSetBandwidthInfoFix12kAdaptive) { TestGetSetBandwidthInfo(LoadSpeechData().data(), 12000); } TEST(IsacCommonTest, GetSetBandwidthInfoFix15kAdaptive) { TestGetSetBandwidthInfo(LoadSpeechData().data(), 15000); } TEST(IsacCommonTest, GetSetBandwidthInfoFix19kAdaptive) { TestGetSetBandwidthInfo(LoadSpeechData().data(), 19000); } TEST(IsacCommonTest, GetSetBandwidthInfoFix22kAdaptive) { TestGetSetBandwidthInfo(LoadSpeechData().data(), 22000); } TEST(IsacCommonTest, GetSetBandwidthInfoFloat12k) { TestGetSetBandwidthInfo(LoadSpeechData().data(), 12000); } TEST(IsacCommonTest, GetSetBandwidthInfoFloat15k) { TestGetSetBandwidthInfo(LoadSpeechData().data(), 15000); } TEST(IsacCommonTest, GetSetBandwidthInfoFloat19k) { TestGetSetBandwidthInfo(LoadSpeechData().data(), 19000); } TEST(IsacCommonTest, GetSetBandwidthInfoFloat22k) { TestGetSetBandwidthInfo(LoadSpeechData().data(), 22000); } TEST(IsacCommonTest, GetSetBandwidthInfoFix12k) { TestGetSetBandwidthInfo(LoadSpeechData().data(), 12000); } TEST(IsacCommonTest, GetSetBandwidthInfoFix15k) { TestGetSetBandwidthInfo(LoadSpeechData().data(), 15000); } TEST(IsacCommonTest, GetSetBandwidthInfoFix19k) { TestGetSetBandwidthInfo(LoadSpeechData().data(), 19000); } TEST(IsacCommonTest, GetSetBandwidthInfoFix22k) { TestGetSetBandwidthInfo(LoadSpeechData().data(), 22000); } } // namespace webrtc