To reduce latency when delivering messages on channel with low traffic
volume and with packet loss, where retransmissions are not driven by
fast retransmit but by T3-RTX timer, set the I-SACK bit (RFC7053) when
the congestion window is low.
Note that RFC7053 doesn't have to be negotiated, as is explained in
https://www.rfc-editor.org/rfc/rfc7053.html#section-6, and if the
receiver doesn't support it, it will delay SACKs as is done today.
When T3-RTX fires, the congestion window will be set to one MTU and any
future sent message will only send one MTU's worth of data before waiting
for the receiver's SACK until more data is sent. Delayed SACK, which is
normally used, could delay the next packet from being sent unecessarily
long. Setting I-SACK when the congestion window is small will make the
receiver always send a SACK for every received packet with a DATA chunk
in it. By not setting it always, it will not affect the packet rate when
the channel is fully utilized.
This modification improves latency in the aforementioned situations
without significantly affecting bandwidth. While this change increases
SACK frequency in specific scenarios, the impact on overall network load
is expected to be minimal.
Bug: webrtc:396080535
Change-Id: If4a5aa960969f1385c9ea59baa7e2d52caf25626
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/377140
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#43897}
A few tests in dcsctp_socket_test was named DcSctpSocketResendInitTest
instead of DcSctpSocketTest. There is no reason for that.
Bug: None
Change-Id: I845eb0ab6150c4e5d457307e12f056486f86e468
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/369820
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#43470}
This was unintentionally removed in change
https://webrtc-review.googlesource.com/c/src/+/359681 due to a dirty
workspace.
Re-adding it.
Bug: None
Change-Id: Icff55b7a656ed9b504b0e10e7aeb947e8df78e85
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/360540
Auto-Submit: Victor Boivie <boivie@webrtc.org>
Commit-Queue: Florent Castelli <orphis@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#42846}
There was a feature in the retransmission queue to avoid fragmenting
large messages when the congestion window was large. This was a feature
that intended to improve data channel performance under Chrome, where
communication with the network process (over MOJO) was lossy and losing
messages with small fragments could result in unnecessary
retransmissions. But back then, the implementation for fast retransmit
wasn't implemented correctly, so the benchmarking result don't
reproduce any longer.
So just improve the algorithm by removing this code. This aligns it with
the RFC and makes it easier to implement pluggable congestion control
algorithms (that wouldn't want this feature).
Bug: webrtc:42223116
Change-Id: Ifaaa82dac4b8fe2f55418158ae8b3da97199212f
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/359681
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#42797}
Before this change, the heartbeat timer was restarted every time a
packet was sent on the socket. On an idle connection, if the peer is
sending heartbeats, just responding to those heartbeats (with a
HEARTBEAT-ACK) would restart the timer, and then this socket wouldn't
do any heartbeating itself because the next hearbeat by the peer would
be received before the timer expires.
This is not according to the specification, where
https://datatracker.ietf.org/doc/html/rfc9260#section-8.3 states that
"A destination transport address is considered "idle" if no new chunk
that can be used for updating path RTT (usually including first
transmission DATA, INIT, COOKIE ECHO, or HEARTBEAT chunks, etc.)"
There are already timers running when INIT, and COOKIE-ECHO are sent
and not acked, so the heartbeat shouldn't be sent then. This is further
confirmed in the same section in the RFC which says that "The sending of
HEARTBEAT chunks MAY begin upon reaching the ESTABLISHED state". And
when INIT and COOKIE-ECHO are sent, the connection is not yet
established.
This CL changes so that the heartbeat timer is only restarted when any
DATA or I-DATA chunk is sent. This will make both sides send heartbeats
on an idle connection.
Bug: webrtc:343600379
Change-Id: I5ab159b7901e2ec9d37b24aaf845891b60a53c13
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/352841
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#42409}
Keeping the old setting for the total queue size
limit, which avoids breaking a downstream.
This reverts commit 47ce449afaf9ba38785437fdd338630cad24a77b
and relands commit 4c990e2e56157175324e651f95f3d8c6a0e5c030.
Bug: chromium:40072842
Change-Id: I1e7d14b5d0026232d1fc9277172b6947b8be3490
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/343120
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#41907}
This reverts commit 4c990e2e56157175324e651f95f3d8c6a0e5c030.
Reason for revert: Breaks downstream build.
Original change's description:
> dcsctp: Add per-stream-limit, refactor limits.
>
> The limits have been moved out from the Send Queue as they were enforced
> outside the queue anyway (in the socket). That was a preparation for
> adding even more limits; There is now also a per-stream limit, allowing
> individual streams to have one (global) limit, and the entire socket to
> have another limit.
>
> These limits are very small in the default options. In Chrome, the limit
> is 16MB per stream, so expect the defaults to be updated when the
> additional buffering outside dcSCTP is removed.
>
> Bug: chromium:41221056
> Change-Id: I9f835be05d349cbfce3e9235d34b5ea0e2fe87d1
> Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/342481
> Reviewed-by: Florent Castelli <orphis@webrtc.org>
> Commit-Queue: Victor Boivie <boivie@webrtc.org>
> Cr-Commit-Position: refs/heads/main@{#41895}
Bug: chromium:41221056
Change-Id: Icd57fbfca87d6b512cfc7f7682ae709000c2bcad
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/343080
Commit-Queue: Björn Terelius <terelius@webrtc.org>
Reviewed-by: Victor Boivie <boivie@webrtc.org>
Bot-Commit: rubber-stamper@appspot.gserviceaccount.com <rubber-stamper@appspot.gserviceaccount.com>
Cr-Commit-Position: refs/heads/main@{#41901}
The limits have been moved out from the Send Queue as they were enforced
outside the queue anyway (in the socket). That was a preparation for
adding even more limits; There is now also a per-stream limit, allowing
individual streams to have one (global) limit, and the entire socket to
have another limit.
These limits are very small in the default options. In Chrome, the limit
is 16MB per stream, so expect the defaults to be updated when the
additional buffering outside dcSCTP is removed.
Bug: chromium:41221056
Change-Id: I9f835be05d349cbfce3e9235d34b5ea0e2fe87d1
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/342481
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#41895}
https://datatracker.ietf.org/doc/draft-ietf-tsvwg-sctp-zero-checksum/06/
The previous implementation was for version 00, and since then changes
have been made. The chunk that is used to negotiate this capability has
now grown to include an additional property - the sender's alternate
error detection method.
Bug: webrtc:14997
Change-Id: I78043d187b79f40bbadbcba02eae6eedf54f30f9
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/336380
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#41759}
In the example below, the association is being established between peer
A and Z, and A is the initiating party.
Before this CL, when an association was about to be established, Z would
after having received the INIT chunk, persist state in the socket about
which verification tag and initial TSN that was picked. These would be
re-generated on every incoming INIT (that's fine), but when A had
extracted the cookie from INIT_ACK and sent a reply (COOKIE_ECHO) with
the state cookie, that could fail validation when it's received by Z, if
the sent cookie was not the most recent one or if the COOKIE_ECHO had a
verification tag coming not from the most recent INIT_ACK, because Z had
replaced the state in the socket with the one generated when the second
INIT_ACK chunk was generated - state it used for validation of future
received data.
In other words:
A -> INIT 1
<timeout>
A -> INIT 2 (retransmission of INIT 1)
INIT 1 -> Z - sends INIT_ACK 1 with verification_tag=1, initial_tsn=1,
cookie 1 (and records these to socket state)
INIT 2 -> Z - sends INIT_ACK 2 with verification_tag=2, initial_tsn=2,
cookie 2 (replaces socket state with the new data)
INIT_ACK 1 -> A -> sends COOKIE_ECHO with verification_tag=1, cookie 1
COOKIE_ECHO (cookie 1) -> Z <FAILS, as the state isn't as expected>.
The solution is really to do what RFC4960 says, to not maintain any
state as the receiving peer until COOKIE_ECHO has been received. This
was initially not done because the underlying reason why this is
important in SCTP is to avoid denial of service, and this is why SCTP
has the four-way handshake. But for Data Channels - SCTP over DTLS -
this attack vector isn't available. So the implementation was
"simplified" by keeping socket state instead of encoding it in the
state cookie, but that obviously had downsides.
So with this CL, the non-initiating peer in connection establishment
doesn't keep any socket state, and puts all that state in the state
cookie instead. This allows any COOKIE_ECHO to be received by Z.
Bug: webrtc:15712
Change-Id: I596c7330ce27292612d3c9f86b21c712f6f4e408
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/330440
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#41340}
While this is a fairly big CL, it's fairly straightforward. It replaces
uses of TimeMs with webrtc::Timestamp, and additionally does some
cleanup of DurationMs to webrtc::TimeDelta that are now easier to do.
Bug: webrtc:15593
Change-Id: Id0e3edcba0533e0e8df3358b1778b6995c344243
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/326560
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#41138}
https://datatracker.ietf.org/doc/html/rfc6525#section-5.2.2:
E2: If the Sender's Last Assigned TSN is greater than the cumulative
acknowledgment point, then the endpoint MUST enter "deferred
reset processing". ... until the cumulative
acknowledgment point reaches the Sender's Last Assigned TSN.
The cumulative acknowledgement point can not only be reached by
receiving DATA chunks, but also by receiving a FORWARD-TSN that
instructs the receiver to skip them. This was only done for DATA and not
for FORWARD-TSN, which is now corrected.
Additionally, an unnecessary implicit sending of SACK after having
received FORWARD-TSN was removed as this is done anyway every time a
packet has been received. This unifies the processing of DATA and
FORWARD-TSN more.
Bug: webrtc:14600
Change-Id: If797d3c46e741074fe05e322d0aebec765a87968
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/321400
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#40811}
More general matches that can be reused, less specialized ones.
Bug: None
Change-Id: I12ea98caf4f566168566173a509c204bd25e5a13
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/321123
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#40804}
The handover state has been added with
commit daaa6ab5a8c74b87d9d6ded07342d8a2c50c73f7.
This reverts commit 014cbed9d2377ec0a0b15f2c48b21a562f770366.
Bug: webrtc:14997
Change-Id: Ie84f3184f3ea67aaa6438481634046ba18b497a6
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/320941
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Reviewed-by: Jeremy Leconte <jleconte@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#40794}
This reverts commit a736f30a5fddfa9a6af02a0a916da09bcac49d0d.
Due to a downstream project not supporting this
new handover state, it fails. Handover state needs
to be submitted first, then downstream project needs
to be updated, and finally the code changes can be
submitted.
Bug: webrtc:14997
Change-Id: I8551e349408d9bf4eb593cb948279d659467fe20
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/302821
Bot-Commit: rubber-stamper@appspot.gserviceaccount.com <rubber-stamper@appspot.gserviceaccount.com>
Auto-Submit: Victor Boivie <boivie@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#39923}
If configured, attempt to negotiate "zero checksum
acceptable" capability, which will make the outgoing
packets have a fixed checksum of zero. Received
packets will not be verified for a correct checksum
if it's zero.
Also includes some boilerplate:
- Setting capability in state cookie
- Adding capability to handover state
- Adding metric to know if the feature is used
This feature is not enabled by default, as it will be
first evaluated with an A/B experiment before making
it the default.
When the feature is enabled, lower CPU consumption for
both receiving and sending packets is expected. How
much depends on the architecture, as some architectures
have better support for generating CRC32 in hardware
than others.
Bug: webrtc:14997
Change-Id: If23f73e87220c7d42bd4f9a92772cda16bc18fcb
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/299076
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#39920}
This reverts commit 45eae346930aedbf4624d054e0633c94b397b8ec.
It was found not to be the root cause of the performance
regression, so it's safe to reland.
Bug: webrtc:14997
Change-Id: I67c90752875bf4071cbdd5adfa462a37f4d4ceab
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/302162
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Bot-Commit: rubber-stamper@appspot.gserviceaccount.com <rubber-stamper@appspot.gserviceaccount.com>
Cr-Commit-Position: refs/heads/main@{#39910}
This reverts commit bd46bb7660fbc9f31799196058f7a1957f50aa31.
Reason for revert: There is a slight performance degradation
pointing to this CL, so revert this to be able to confirm if
it is the culprit.
Original change's description:
> dcsctp: Support zero checksum packets
>
> If configured, the packet parser will allow packets with
> a set checksum of zero. In that case, the correct checksum
> will not even be calculated, avoiding a CPU intensive
> calculation.
>
> Also, if specified when building a packet, the checksum can
> be opted to be not calculated and written to the packet.
> This is to be used when draft-tuexen-tsvwg-sctp-zero-checksum
> has been negotiated, except for some packets during association
> establishment.
>
> This is mainly a preparation CL and follow-up CL will enable
> this feature.
>
> Low-Coverage-Reason: Affects debug logging code not run in tests
> Bug: webrtc:14997
> Change-Id: I3207ac3a626df039ee2990403c2edd6429f17617
> Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/298481
> Reviewed-by: Harald Alvestrand <hta@webrtc.org>
> Commit-Queue: Victor Boivie <boivie@webrtc.org>
> Cr-Commit-Position: refs/heads/main@{#39737}
Bug: webrtc:14997
Change-Id: Ie22267abb4bcd25d5af07875eb933c51ed5be853
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/301580
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#39878}
If configured, the packet parser will allow packets with
a set checksum of zero. In that case, the correct checksum
will not even be calculated, avoiding a CPU intensive
calculation.
Also, if specified when building a packet, the checksum can
be opted to be not calculated and written to the packet.
This is to be used when draft-tuexen-tsvwg-sctp-zero-checksum
has been negotiated, except for some packets during association
establishment.
This is mainly a preparation CL and follow-up CL will enable
this feature.
Low-Coverage-Reason: Affects debug logging code not run in tests
Bug: webrtc:14997
Change-Id: I3207ac3a626df039ee2990403c2edd6429f17617
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/298481
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#39737}
When a stream reset response has been received, this may result
in unpausing the streams (either because it was successful or
because it failed - but streams will be unpaused). Directly after
receiving the response, send out any pending chunks that are
ready to be sent.
Before this CL, they would eventually be sent out, but that is
unnecessary and undeterministic.
Bug: webrtc:14277
Change-Id: Ic1ab38bc3cea96cfec7419e25001f12807523a3a
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/273800
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#38009}
When a RECONFIG has been received with a last assigned TSN that is
not yet seen by the receiver, it will enter deferred reset mode
(https://www.rfc-editor.org/rfc/rfc6525#section-5.2.2, E2).
When more DATA is received, moving the cumulative acknowledgment point,
the request will finally be processed. But the last chunk that has the
same TSN as the last assigned TSN was before this CL not applied before
doing the reset - it was applied after.
This would result of a message getting lost or possibly getting
truncated or incorrectly merged with another.
Handling the message before resetting the stream is the simple
solution here.
Bug: webrtc:14277
Change-Id: Iea9fa227778077a9ff2f78bc77b5d93cc32b702b
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/273323
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37993}
To allow the transport to be able to know which ranges of
stream identifiers it can use, the negotiated incoming/inbound
and outgoing/outbound stream counts will be exposed. They are
added to Metrics, and guaranteed to be available from within
the OnConnected callback.
In this CL, dcSCTP will not validate that the client is sending
on a stream that is within the negotiated bounds. That will be
done as a follow-up CL.
Bug: webrtc:14277
Change-Id: Ic764e5f93f53d55633ee547df86246022f4097cf
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/272321
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37876}
This adds the final piece, which makes the socket and the retransmission
queue generate the callbacks.
Bug: webrtc:5696
Change-Id: I1e28c98e9660bd018e817a3ba0fa6b03940fcd33
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/264125
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37455}
There was also some refactoring to create the TCB at the same time,
to ensure the metric is always set.
Bug: webrtc:13052, webrtc:5696
Change-Id: I5557ad5f0fc4a0520de1eaaafa15459b3200c4f5
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/262259
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37388}
This adds support to enable message interleaving in the stream scheduler
from the socket, proxied by the send queue.
It also adds socket unit tests to ensure that prioritization and
interleaving works. Also, send queue test has been added to validate the
integration of the stream scheduler. But the actual scheduling parts of
it will be tested in the stream scheduler unit tests.
Bug: webrtc:5696
Change-Id: Ic7d3d2dc28405c77a107f0148f0096882961eec7
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/262248
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37355}
This is a re-land of commit 3180a5ad0663900a39adf4b9974052c356c835fe.
This is an issue found in fuzzer, and doesn't really happen in WebRTC
as it never closes the connection and reconnects.
The issue is that the send queue outlives any connection since you're
allowed to send messages (well, enqueue them) before the association is
fully connected. So the send queue is always present but the TCB
(information about the connection) is torn down when the connection is
closed for example. And the TCB holds the Stream Reset handler, which is
responsible for e.g. keeping track of stream reset sequence numbers and
such - which is tied to the connection.
So to ensure that the Stream Reset Handler is in charge of deciding
if a stream reset is taking place, make sure that the send queue is in
a known good state when the Stream Reset handler is created.
Bug: webrtc:13994, chromium:1320194
Change-Id: Ib8254488523c7abb58057c602f76f411fce896fa
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/265000
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37115}
This is a reland of commit 17a02a31d7d2897b75ad69fdac5d10e7475a5865.
This is the first part of supporting stream priorities, and adds the API
and very basic support for setting and retrieving the stream priority.
This commit doesn't in any way change the actual packet sending - the
specified priority values are stored, but not acted on.
This is all that is client visible, so clients can start using the API
as written, and they would never notice that things are missing.
Bug: webrtc:5696
Change-Id: I04d64a63cbaec67568496ad99667e14eba85f2e0
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/264424
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37081}
This reverts commit 17a02a31d7d2897b75ad69fdac5d10e7475a5865.
Reason for revert: Breaks downstream test
Original change's description:
> dcsctp: Add public API for setting priorities
>
> This is the first part of supporting stream priorities, and adds the API
> and very basic support for setting and retrieving the stream priority.
>
> This commit doesn't in any way change the actual packet sending - the
> specified priority values are stored, but not acted on.
>
> This is all that is client visible, so clients can start using the API
> as written, and they would never notice that things are missing.
>
> Bug: webrtc:5696
> Change-Id: I24fce8cbb6f3cba187df99d1d3f45e73621c93c6
> Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/261943
> Reviewed-by: Harald Alvestrand <hta@webrtc.org>
> Commit-Queue: Victor Boivie <boivie@webrtc.org>
> Cr-Commit-Position: refs/heads/main@{#37034}
Bug: webrtc:5696
Change-Id: If172d9c9dbce7aae72152abbbae1ccc77340bbc1
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/264444
Owners-Override: Björn Terelius <terelius@webrtc.org>
Bot-Commit: rubber-stamper@appspot.gserviceaccount.com <rubber-stamper@appspot.gserviceaccount.com>
Commit-Queue: Björn Terelius <terelius@webrtc.org>
Auto-Submit: Björn Terelius <terelius@webrtc.org>
Reviewed-by: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37039}
This is the first part of supporting stream priorities, and adds the API
and very basic support for setting and retrieving the stream priority.
This commit doesn't in any way change the actual packet sending - the
specified priority values are stored, but not acted on.
This is all that is client visible, so clients can start using the API
as written, and they would never notice that things are missing.
Bug: webrtc:5696
Change-Id: I24fce8cbb6f3cba187df99d1d3f45e73621c93c6
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/261943
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#37034}
This CL first restricts Metrics to be retrievable when the socket is
created. This avoids having most fields as optional and makes it
easier to add more metrics.
Secondly, the peer implementation is moved into Metrics.
Bug: webrtc:13052
Change-Id: I6cb53eeef3f84ac34f3efc883853338f903cc758
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/262256
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#36888}
This reverts commit 3180a5ad0663900a39adf4b9974052c356c835fe.
Reason for revert: Speculative revert due to failures in downstream tests.
Original change's description:
> dcsctp: Reset send queue when recreating TCB
>
> This is an issue found in fuzzer, and doesn't really happen in WebRTC
> as it never closes the connection and reconnects.
>
> The issue is that the send queue outlives any connection since you're
> allowed to send messages (well, enqueue them) before the association is
> fully connected. So the send queue is always present but the TCB
> (information about the connection) is torn down when the connection is
> closed for example. And the TCB holds the Stream Reset handler, which is
> responsible for e.g. keeping track of stream reset sequence numbers and
> such - which is tied to the connection.
>
> So to ensure that the Stream Reset Handler is in charge of deciding
> if a stream reset is taking place, make sure that the send queue is in
> a known good state when the Stream Reset handler is created.
>
> Bug: webrtc:13994, chromium:1320194
> Change-Id: I940e4690ac9237ac99dd69a9ffc060cdac61711d
> Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/261260
> Reviewed-by: Harald Alvestrand <hta@webrtc.org>
> Commit-Queue: Victor Boivie <boivie@webrtc.org>
> Cr-Commit-Position: refs/heads/main@{#36779}
Bug: webrtc:13994, chromium:1320194
Change-Id: I89bb9cae60adc53902c1304e79047d18e72594a5
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/261302
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Auto-Submit: Björn Terelius <terelius@webrtc.org>
Bot-Commit: rubber-stamper@appspot.gserviceaccount.com <rubber-stamper@appspot.gserviceaccount.com>
Owners-Override: Björn Terelius <terelius@webrtc.org>
Reviewed-by: Victor Boivie <boivie@google.com>
Commit-Queue: Harald Alvestrand <hta@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#36783}
This is an issue found in fuzzer, and doesn't really happen in WebRTC
as it never closes the connection and reconnects.
The issue is that the send queue outlives any connection since you're
allowed to send messages (well, enqueue them) before the association is
fully connected. So the send queue is always present but the TCB
(information about the connection) is torn down when the connection is
closed for example. And the TCB holds the Stream Reset handler, which is
responsible for e.g. keeping track of stream reset sequence numbers and
such - which is tied to the connection.
So to ensure that the Stream Reset Handler is in charge of deciding
if a stream reset is taking place, make sure that the send queue is in
a known good state when the Stream Reset handler is created.
Bug: webrtc:13994, chromium:1320194
Change-Id: I940e4690ac9237ac99dd69a9ffc060cdac61711d
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/261260
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#36779}
When streams were to be reset, but there was already an ongoing
stream reset command in-flight, those streams wouldn't be properly
reset. When multiple streams were reset close to each other (within
an RTT), some streams would not have their SSNs reset, which resulted
in the stream resuming the SSN sequence. This could result in ordered
streams not delivering all messages as the receiver wouldn't deliver any
messages with SSN different from the expected SSN=0.
In WebRTC data channels, this would be triggered if multiple channels
were closed at roughly the same time, then re-opened, and continued
to be used in ordered mode. Unordered messages would still be delivered,
but the stream state could be wrong as the DATA_CHANNEL_ACK message is
sent ordered, and possibly not delivered.
There were unit tests for this, but not on the socket level using
real components, but just on the stream reset handler using mocks,
where this issue wasn't found. Also, those mocks didn't validate that
the correct parameters were provided, so that's fixed now.
The root cause was the PrepareResetStreams was only called if there
wasn't an ongoing stream reset operation in progress. One may try to
solve it by always calling PrepareResetStreams also when there is an
ongoing request, or to call it when the request has finished. One would
then realize that when the response of the outgoing stream request is
received, and CommitResetStreams is called, it would reset all paused
and (prepared) to-be-reset streams - not just the ones in the outgoing
stream request.
One cause of this was the lack of a single source of truth of the stream
states. The SendQueue kept track of which streams that were paused, but
the stream reset handler kept track of which streams that were
resetting. As that's error prone, this CL moves the source of truth
completely to the SendQueue and defining explicit stream pause states. A
stream can be in one of these possible states:
* Not paused. This is the default for an active stream.
* Pending to be paused. This is when it's about to be reset, but
there is a message that has been partly sent, with fragments
remaining to be sent before it can be paused.
* Paused, with no partly sent message. In this state, it's ready to
be reset.
* Resetting. A stream transitions into this state when it has been
paused and has been included in an outgoing stream reset request.
When this request has been responded to, the stream can really be
reset (SSN=0, MID=0).
This CL also improves logging, and adds socket tests to catch this
issue.
Bug: webrtc:13994, chromium:1320194
Change-Id: I883570d1f277bc01e52b1afad62d6be2aca930a2
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/261180
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#36771}
This proved to be not very efficient unfortunately, so revert it and
keep bundling FORWARD-TSN with other packets to be more efficient.
https://github.com/sctplab/usrsctp/issues/597 is still unresolved.
Note that this is not a clean revert; The logic to rate limit the
sending of FORWARD-TSN is kept, as it still makes sense.
This partly reverts commit 0ca62e3752149ad37f73bf074db0a5f8fcaf6585.
Bug: webrtc:12961
Change-Id: I42728434290e7ece19e9c23f24ef6f3d3b171315
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/259520
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#36584}
When resetting several streams in sequence, only the first stream will
be included in the first RE_CONFIG chunk as it's created eagerly
whenever someone calls ResetStreams. The remaining ones are queued as
pending. When the first request finishes, the remaining ones should
continue to be processed, but this wasn't done prior to this commit.
This would only happen if two streams would be reset with shorter time
between them than a RTT, so that there would be an outstanding request
forcing the second reset to be enqueued.
Bug: chromium:1312009
Change-Id: Id74b375d1d1720406a3bca4ec60df5780ca7edba
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/257306
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#36404}
This is a solution to some problems that have been found locally when
running the fuzzer for a long time. The fuzzer keeps on fuzzing, and has
found a way to trigger a consistency check to fail when a client
intentionally sends different messages - unordered and ordered - using
the same TSNs. As the reassembly queue has different handling of ordered
and unordered chunks due to how they are reassembled, it will not notice
if it receives two different chunks with the same TSN. They will both go
to their respective reassembly streams, as those are separate by design.
The data tracker - which keeps track of all received DATA chunks as it
needs to generate SACKs, has a global understanding of all received
chunks. By having it indicate if this is a duplicate received chunk, the
socket can avoid forwarding both chunks to the reassembly queue; only
one chunk will get there.
Bug: None
Change-Id: I602a8552a9a4c853684fcf105309ec3d8073f2c2
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/256110
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#36316}
When a FORWARD-TSN is received as the first chunk on an ordered stream,
it will fail to set the new "next expected SSN" that is present in the
FORWARD-TSN as that stream hasn't been allocated yet. It's allocated
when the first DATA is received on that stream.
This is a non-issue for ordinary data channels as the first message on
any stream will be the "Data Channel Establishment Protocol" messages,
which are always sent reliably. But if prenegotiated channels are used,
and the very first packet received on an ordered data channel is lost
_and_ signaled to the receiver as lost _before_ the receiver has
received any other fragments on that data channel, future messages will
not be delivered on that channel.
Bug: webrtc:13799
Change-Id: Ide5c656243b3a51a2ed9d76615cfc3631cfe900c
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/253902
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#36155}
Following https://abseil.io/tips/122 to make tests easier to understand
and adds a bit of flexibility to create sockets with custom parameters.
This also simplifies handover tests.
Additionally, AdvanceTime will now also run timers, as that was easily
forgotten previously.
Bug: None
Change-Id: Ieb5eece7aca51c98a7634ed1c61646383ad1712d
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/253782
Reviewed-by: Sergey Sukhanov <sergeysu@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#36141}
This avoids copying the payload at all. Future CL will change the
transport.
In performance tests, memcpy was visible in the performance profiles
prior to this change.
Bug: webrtc:12943
Change-Id: I507a1a316165db748e73cf0d58c1be62cc76a2d2
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/236346
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#35428}
It's to be used for clients to record metrics and to e.g. attribute
metrics to which SCTP implementation the peer was using.
This is not explicitly signaled, so heuristics are used. These are not
guaranteed to come to the correct conclusion, and the data is not always
available.
Note: The behavior of dcSCTP will not change depending on the assumed
implementation - only by explicitly signaled capabilities.
Bug: webrtc:13216
Change-Id: I2f58054d17d53d947ed5845df7a08f974d42f918
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/233100
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#35103}
dcSCTP library users can set their custom
g_handover_state_transformer_for_test that can serialize and
deserialize the state. All dcSCTP handover tests call
g_handover_state_transformer_for_test. If some part of the state is
serialized incorrectly or is forgotten, high chance that it will
fail the tests.
Bug: webrtc:13154
Change-Id: I251a099be04dda7611e9df868d36e3a76dc7d1e1
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/232325
Commit-Queue: Sergey Sukhanov <sergeysu@webrtc.org>
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Reviewed-by: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#35035}
This will be useful in future socket handover tests.
Bug: webrtc:13154
Change-Id: Ia789ae971edd9d2832be088f2f8f7dd50c9ce52d
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/231222
Reviewed-by: Victor Boivie <boivie@webrtc.org>
Commit-Queue: Sergey Sukhanov <sergeysu@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#34931}
The restart limit for timers can already be limitless, but the
RetransmissionErrorCounter didn't support this. With this change, the
max_retransmissions and max_init_retransmits can be absl::nullopt to
indicate that there should be infinite retries.
Bug: webrtc:13129
Change-Id: Ia6e91cccbc2e1bb77b3fdd7f37436290adc2f483
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/230701
Reviewed-by: Florent Castelli <orphis@webrtc.org>
Commit-Queue: Victor Boivie <boivie@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#34882}