- Adds thread safety annotations to the AudioDeviceBuffer class.

- Removes the lock that was used to protect the audio transport object.
  It is now protected "by design" instead.
- Removes rec/play_bytes_per_sample_ since we only support 16-bit samples.

BUG=webrtc:6560
R=kwiberg@webrtc.org

Review URL: https://codereview.webrtc.org/2466613002 .

Cr-Commit-Position: refs/heads/master@{#14950}
This commit is contained in:
henrika 2016-11-07 15:56:59 +01:00
parent 41b8ca0420
commit f502222443
5 changed files with 149 additions and 257 deletions

View File

@ -22,6 +22,8 @@
#include "webrtc/modules/audio_device/audio_device_config.h"
#include "webrtc/system_wrappers/include/metrics.h"
#include "webrtc/base/platform_thread.h"
namespace webrtc {
static const char kTimerQueueName[] = "AudioDeviceBufferTimer";
@ -38,16 +40,14 @@ static const size_t kMinValidCallTimeTimeInMilliseconds =
kMinValidCallTimeTimeInSeconds * rtc::kNumMillisecsPerSec;
AudioDeviceBuffer::AudioDeviceBuffer()
: audio_transport_cb_(nullptr),
task_queue_(kTimerQueueName),
playing_(false),
recording_(false),
: task_queue_(kTimerQueueName),
audio_transport_cb_(nullptr),
rec_sample_rate_(0),
play_sample_rate_(0),
rec_channels_(0),
play_channels_(0),
rec_bytes_per_sample_(0),
play_bytes_per_sample_(0),
playing_(false),
recording_(false),
current_mic_level_(0),
new_mic_level_(0),
typing_status_(false),
@ -63,19 +63,21 @@ AudioDeviceBuffer::AudioDeviceBuffer()
last_rec_samples_(0),
play_samples_(0),
last_play_samples_(0),
last_timer_task_time_(0),
max_rec_level_(0),
max_play_level_(0),
last_timer_task_time_(0),
rec_stat_count_(0),
play_stat_count_(0),
play_start_time_(0),
rec_start_time_(0),
only_silence_recorded_(true) {
LOG(INFO) << "AudioDeviceBuffer::ctor";
playout_thread_checker_.DetachFromThread();
recording_thread_checker_.DetachFromThread();
}
AudioDeviceBuffer::~AudioDeviceBuffer() {
RTC_DCHECK(thread_checker_.CalledOnValidThread());
RTC_DCHECK_RUN_ON(&main_thread_checker_);
RTC_DCHECK(!playing_);
RTC_DCHECK(!recording_);
LOG(INFO) << "AudioDeviceBuffer::~dtor";
@ -83,14 +85,18 @@ AudioDeviceBuffer::~AudioDeviceBuffer() {
int32_t AudioDeviceBuffer::RegisterAudioCallback(
AudioTransport* audio_callback) {
RTC_DCHECK_RUN_ON(&main_thread_checker_);
LOG(INFO) << __FUNCTION__;
rtc::CritScope lock(&lock_cb_);
if (playing_ || recording_) {
LOG(LS_ERROR) << "Failed to set audio transport since media was active";
return -1;
}
audio_transport_cb_ = audio_callback;
return 0;
}
void AudioDeviceBuffer::StartPlayout() {
RTC_DCHECK(thread_checker_.CalledOnValidThread());
RTC_DCHECK_RUN_ON(&main_thread_checker_);
// TODO(henrika): allow for usage of DCHECK(!playing_) here instead. Today the
// ADM allows calling Start(), Start() by ignoring the second call but it
// makes more sense to only allow one call.
@ -98,6 +104,7 @@ void AudioDeviceBuffer::StartPlayout() {
return;
}
LOG(INFO) << __FUNCTION__;
playout_thread_checker_.DetachFromThread();
// Clear members tracking playout stats and do it on the task queue.
task_queue_.PostTask([this] { ResetPlayStats(); });
// Start a periodic timer based on task queue if not already done by the
@ -108,16 +115,16 @@ void AudioDeviceBuffer::StartPlayout() {
const uint64_t now_time = rtc::TimeMillis();
// Clear members that are only touched on the main (creating) thread.
play_start_time_ = now_time;
last_playout_time_ = now_time;
playing_ = true;
}
void AudioDeviceBuffer::StartRecording() {
RTC_DCHECK(thread_checker_.CalledOnValidThread());
RTC_DCHECK_RUN_ON(&main_thread_checker_);
if (recording_) {
return;
}
LOG(INFO) << __FUNCTION__;
recording_thread_checker_.DetachFromThread();
// Clear members tracking recording stats and do it on the task queue.
task_queue_.PostTask([this] { ResetRecStats(); });
// Start a periodic timer based on task queue if not already done by the
@ -135,7 +142,7 @@ void AudioDeviceBuffer::StartRecording() {
}
void AudioDeviceBuffer::StopPlayout() {
RTC_DCHECK(thread_checker_.CalledOnValidThread());
RTC_DCHECK_RUN_ON(&main_thread_checker_);
if (!playing_) {
return;
}
@ -145,34 +152,11 @@ void AudioDeviceBuffer::StopPlayout() {
if (!recording_) {
StopPeriodicLogging();
}
// Add diagnostic logging of delta times for playout callbacks. We are doing
// this wihout a lock since playout should be stopped by now and it a minor
// conflict during stop will not have a great impact on the total statistics.
const size_t time_since_start = rtc::TimeSince(play_start_time_);
if (time_since_start > kMinValidCallTimeTimeInMilliseconds) {
size_t total_diff_time = 0;
int num_measurements = 0;
LOG(INFO) << "[playout diff time => #measurements]";
for (size_t diff = 0; diff < arraysize(playout_diff_times_); ++diff) {
uint32_t num_elements = playout_diff_times_[diff];
if (num_elements > 0) {
total_diff_time += num_elements * diff;
num_measurements += num_elements;
LOG(INFO) << "[" << diff << " => " << num_elements << "]";
}
}
if (num_measurements > 0) {
LOG(INFO) << "total_diff_time: " << total_diff_time << ", "
<< "num_measurements: " << num_measurements << ", "
<< "average: "
<< static_cast<float>(total_diff_time) / num_measurements;
}
}
LOG(INFO) << "total playout time: " << time_since_start;
LOG(INFO) << "total playout time: " << rtc::TimeSince(play_start_time_);
}
void AudioDeviceBuffer::StopRecording() {
RTC_DCHECK(thread_checker_.CalledOnValidThread());
RTC_DCHECK_RUN_ON(&main_thread_checker_);
if (!recording_) {
return;
}
@ -202,40 +186,40 @@ void AudioDeviceBuffer::StopRecording() {
}
int32_t AudioDeviceBuffer::SetRecordingSampleRate(uint32_t fsHz) {
RTC_DCHECK(main_thread_checker_.CalledOnValidThread());
LOG(INFO) << "SetRecordingSampleRate(" << fsHz << ")";
RTC_DCHECK(thread_checker_.CalledOnValidThread());
rec_sample_rate_ = fsHz;
return 0;
}
int32_t AudioDeviceBuffer::SetPlayoutSampleRate(uint32_t fsHz) {
RTC_DCHECK(main_thread_checker_.CalledOnValidThread());
LOG(INFO) << "SetPlayoutSampleRate(" << fsHz << ")";
RTC_DCHECK(thread_checker_.CalledOnValidThread());
play_sample_rate_ = fsHz;
return 0;
}
int32_t AudioDeviceBuffer::RecordingSampleRate() const {
RTC_DCHECK(main_thread_checker_.CalledOnValidThread());
return rec_sample_rate_;
}
int32_t AudioDeviceBuffer::PlayoutSampleRate() const {
RTC_DCHECK(main_thread_checker_.CalledOnValidThread());
return play_sample_rate_;
}
int32_t AudioDeviceBuffer::SetRecordingChannels(size_t channels) {
RTC_DCHECK(main_thread_checker_.CalledOnValidThread());
LOG(INFO) << "SetRecordingChannels(" << channels << ")";
rtc::CritScope lock(&lock_);
rec_channels_ = channels;
rec_bytes_per_sample_ = sizeof(int16_t) * channels;
return 0;
}
int32_t AudioDeviceBuffer::SetPlayoutChannels(size_t channels) {
RTC_DCHECK(main_thread_checker_.CalledOnValidThread());
LOG(INFO) << "SetPlayoutChannels(" << channels << ")";
rtc::CritScope lock(&lock_);
play_channels_ = channels;
play_bytes_per_sample_ = sizeof(int16_t) * channels;
return 0;
}
@ -256,30 +240,39 @@ int32_t AudioDeviceBuffer::RecordingChannel(
}
size_t AudioDeviceBuffer::RecordingChannels() const {
RTC_DCHECK(main_thread_checker_.CalledOnValidThread());
return rec_channels_;
}
size_t AudioDeviceBuffer::PlayoutChannels() const {
RTC_DCHECK(main_thread_checker_.CalledOnValidThread());
return play_channels_;
}
int32_t AudioDeviceBuffer::SetCurrentMicLevel(uint32_t level) {
#if !defined(WEBRTC_WIN)
// Windows uses a dedicated thread for volume APIs.
RTC_DCHECK_RUN_ON(&recording_thread_checker_);
#endif
current_mic_level_ = level;
return 0;
}
int32_t AudioDeviceBuffer::SetTypingStatus(bool typing_status) {
RTC_DCHECK_RUN_ON(&recording_thread_checker_);
typing_status_ = typing_status;
return 0;
}
uint32_t AudioDeviceBuffer::NewMicLevel() const {
RTC_DCHECK_RUN_ON(&recording_thread_checker_);
return new_mic_level_;
}
void AudioDeviceBuffer::SetVQEData(int play_delay_ms,
int rec_delay_ms,
int clock_drift) {
RTC_DCHECK_RUN_ON(&recording_thread_checker_);
play_delay_ms_ = play_delay_ms;
rec_delay_ms_ = rec_delay_ms;
clock_drift_ = clock_drift;
@ -309,12 +302,9 @@ int32_t AudioDeviceBuffer::StopOutputFileRecording() {
int32_t AudioDeviceBuffer::SetRecordedBuffer(const void* audio_buffer,
size_t num_samples) {
const size_t rec_channels = [&] {
rtc::CritScope lock(&lock_);
return rec_channels_;
}();
RTC_DCHECK_RUN_ON(&recording_thread_checker_);
// Copy the complete input buffer to the local buffer.
const size_t size_in_bytes = num_samples * rec_channels * sizeof(int16_t);
const size_t size_in_bytes = num_samples * rec_channels_ * sizeof(int16_t);
const size_t old_size = rec_buffer_.size();
rec_buffer_.SetData(static_cast<const uint8_t*>(audio_buffer), size_in_bytes);
// Keep track of the size of the recording buffer. Only updated when the
@ -326,7 +316,7 @@ int32_t AudioDeviceBuffer::SetRecordedBuffer(const void* audio_buffer,
int16_t max_abs = 0;
RTC_DCHECK_LT(rec_stat_count_, 50);
if (++rec_stat_count_ >= 50) {
const size_t size = num_samples * rec_channels;
const size_t size = num_samples * rec_channels_;
// Returns the largest absolute value in a signed 16-bit vector.
max_abs = WebRtcSpl_MaxAbsValueW16(
reinterpret_cast<const int16_t*>(rec_buffer_.data()), size);
@ -348,20 +338,17 @@ int32_t AudioDeviceBuffer::SetRecordedBuffer(const void* audio_buffer,
}
int32_t AudioDeviceBuffer::DeliverRecordedData() {
rtc::CritScope lock(&lock_cb_);
RTC_DCHECK_RUN_ON(&recording_thread_checker_);
if (!audio_transport_cb_) {
LOG(LS_WARNING) << "Invalid audio transport";
return 0;
}
const size_t rec_bytes_per_sample = [&] {
rtc::CritScope lock(&lock_);
return rec_bytes_per_sample_;
}();
const size_t rec_bytes_per_sample = rec_channels_ * sizeof(int16_t);
uint32_t new_mic_level(0);
uint32_t total_delay_ms = play_delay_ms_ + rec_delay_ms_;
size_t num_samples = rec_buffer_.size() / rec_bytes_per_sample;
int32_t res = audio_transport_cb_->RecordedDataIsAvailable(
rec_buffer_.data(), num_samples, rec_bytes_per_sample_, rec_channels_,
rec_buffer_.data(), num_samples, rec_bytes_per_sample, rec_channels_,
rec_sample_rate_, total_delay_ms, clock_drift_, current_mic_level_,
typing_status_, new_mic_level);
if (res != -1) {
@ -373,26 +360,11 @@ int32_t AudioDeviceBuffer::DeliverRecordedData() {
}
int32_t AudioDeviceBuffer::RequestPlayoutData(size_t num_samples) {
// Measure time since last function call and update an array where the
// position/index corresponds to time differences (in milliseconds) between
// two successive playout callbacks, and the stored value is the number of
// times a given time difference was found.
int64_t now_time = rtc::TimeMillis();
size_t diff_time = rtc::TimeDiff(now_time, last_playout_time_);
// Truncate at 500ms to limit the size of the array.
diff_time = std::min(kMaxDeltaTimeInMs, diff_time);
last_playout_time_ = now_time;
playout_diff_times_[diff_time]++;
const size_t play_channels = [&] {
rtc::CritScope lock(&lock_);
return play_channels_;
}();
RTC_DCHECK_RUN_ON(&playout_thread_checker_);
// The consumer can change the request size on the fly and we therefore
// resize the buffer accordingly. Also takes place at the first call to this
// method.
const size_t play_bytes_per_sample = play_channels * sizeof(int16_t);
const size_t play_bytes_per_sample = play_channels_ * sizeof(int16_t);
const size_t size_in_bytes = num_samples * play_bytes_per_sample;
if (play_buffer_.size() != size_in_bytes) {
play_buffer_.SetSize(size_in_bytes);
@ -400,32 +372,28 @@ int32_t AudioDeviceBuffer::RequestPlayoutData(size_t num_samples) {
}
size_t num_samples_out(0);
{
rtc::CritScope lock(&lock_cb_);
// It is currently supported to start playout without a valid audio
// transport object. Leads to warning and silence.
if (!audio_transport_cb_) {
LOG(LS_WARNING) << "Invalid audio transport";
return 0;
}
// It is currently supported to start playout without a valid audio
// transport object. Leads to warning and silence.
if (!audio_transport_cb_) {
LOG(LS_WARNING) << "Invalid audio transport";
return 0;
}
// Retrieve new 16-bit PCM audio data using the audio transport instance.
int64_t elapsed_time_ms = -1;
int64_t ntp_time_ms = -1;
uint32_t res = audio_transport_cb_->NeedMorePlayData(
num_samples, play_bytes_per_sample_, play_channels, play_sample_rate_,
play_buffer_.data(), num_samples_out, &elapsed_time_ms, &ntp_time_ms);
if (res != 0) {
LOG(LS_ERROR) << "NeedMorePlayData() failed";
}
// Retrieve new 16-bit PCM audio data using the audio transport instance.
int64_t elapsed_time_ms = -1;
int64_t ntp_time_ms = -1;
uint32_t res = audio_transport_cb_->NeedMorePlayData(
num_samples, play_bytes_per_sample, play_channels_, play_sample_rate_,
play_buffer_.data(), num_samples_out, &elapsed_time_ms, &ntp_time_ms);
if (res != 0) {
LOG(LS_ERROR) << "NeedMorePlayData() failed";
}
// Derive a new level value twice per second.
int16_t max_abs = 0;
RTC_DCHECK_LT(play_stat_count_, 50);
if (++play_stat_count_ >= 50) {
const size_t size = num_samples * play_channels;
const size_t size = num_samples * play_channels_;
// Returns the largest absolute value in a signed 16-bit vector.
max_abs = WebRtcSpl_MaxAbsValueW16(
reinterpret_cast<const int16_t*>(play_buffer_.data()), size);
@ -442,11 +410,9 @@ int32_t AudioDeviceBuffer::RequestPlayoutData(size_t num_samples) {
}
int32_t AudioDeviceBuffer::GetPlayoutData(void* audio_buffer) {
RTC_DCHECK_RUN_ON(&playout_thread_checker_);
RTC_DCHECK_GT(play_buffer_.size(), 0u);
const size_t play_bytes_per_sample = [&] {
rtc::CritScope lock(&lock_);
return play_bytes_per_sample_;
}();
const size_t play_bytes_per_sample = play_channels_ * sizeof(int16_t);
memcpy(audio_buffer, play_buffer_.data(), play_buffer_.size());
return static_cast<int32_t>(play_buffer_.size() / play_bytes_per_sample);
}
@ -462,7 +428,7 @@ void AudioDeviceBuffer::StopPeriodicLogging() {
}
void AudioDeviceBuffer::LogStats(LogState state) {
RTC_DCHECK(task_queue_.IsCurrent());
RTC_DCHECK_RUN_ON(&task_queue_);
int64_t now_time = rtc::TimeMillis();
if (state == AudioDeviceBuffer::LOG_START) {
// Reset counters at start. We will not add any logging in this state but
@ -521,7 +487,7 @@ void AudioDeviceBuffer::LogStats(LogState state) {
}
void AudioDeviceBuffer::ResetRecStats() {
RTC_DCHECK(task_queue_.IsCurrent());
RTC_DCHECK_RUN_ON(&task_queue_);
rec_callbacks_ = 0;
last_rec_callbacks_ = 0;
rec_samples_ = 0;
@ -530,7 +496,7 @@ void AudioDeviceBuffer::ResetRecStats() {
}
void AudioDeviceBuffer::ResetPlayStats() {
RTC_DCHECK(task_queue_.IsCurrent());
RTC_DCHECK_RUN_ON(&task_queue_);
play_callbacks_ = 0;
last_play_callbacks_ = 0;
play_samples_ = 0;
@ -539,7 +505,7 @@ void AudioDeviceBuffer::ResetPlayStats() {
}
void AudioDeviceBuffer::UpdateRecStats(int16_t max_abs, size_t num_samples) {
RTC_DCHECK(task_queue_.IsCurrent());
RTC_DCHECK_RUN_ON(&task_queue_);
++rec_callbacks_;
rec_samples_ += num_samples;
if (max_abs > max_rec_level_) {
@ -548,7 +514,7 @@ void AudioDeviceBuffer::UpdateRecStats(int16_t max_abs, size_t num_samples) {
}
void AudioDeviceBuffer::UpdatePlayStats(int16_t max_abs, size_t num_samples) {
RTC_DCHECK(task_queue_.IsCurrent());
RTC_DCHECK_RUN_ON(&task_queue_);
++play_callbacks_;
play_samples_ += num_samples;
if (max_abs > max_play_level_) {

View File

@ -12,8 +12,8 @@
#define WEBRTC_MODULES_AUDIO_DEVICE_AUDIO_DEVICE_BUFFER_H_
#include "webrtc/base/buffer.h"
#include "webrtc/base/criticalsection.h"
#include "webrtc/base/task_queue.h"
#include "webrtc/base/thread_annotations.h"
#include "webrtc/base/thread_checker.h"
#include "webrtc/modules/audio_device/include/audio_device.h"
#include "webrtc/system_wrappers/include/file_wrapper.h"
@ -103,29 +103,41 @@ class AudioDeviceBuffer {
void ResetRecStats();
void ResetPlayStats();
// Ensures that methods are called on the same thread as the thread that
// creates this object.
rtc::ThreadChecker thread_checker_;
// This object lives on the main (creating) thread and most methods are
// called on that same thread. When audio has started some methods will be
// called on either a native audio thread for playout or a native thread for
// recording. Some members are not annotated since they are "protected by
// design" and adding e.g. a race checker can cause failuries for very few
// edge cases and it is IMHO not worth the risk to use them in this class.
// TODO(henrika): see if it is possible to refactor and annotate all members.
// Raw pointer to AudioTransport instance. Supplied to RegisterAudioCallback()
// and it must outlive this object.
AudioTransport* audio_transport_cb_;
// Main thread on which this object is created.
rtc::ThreadChecker main_thread_checker_;
// TODO(henrika): given usage of thread checker, it should be possible to
// remove all locks in this class.
rtc::CriticalSection lock_;
rtc::CriticalSection lock_cb_;
// Native (platform specific) audio thread driving the playout side.
rtc::ThreadChecker playout_thread_checker_;
// Native (platform specific) audio thread driving the recording side.
rtc::ThreadChecker recording_thread_checker_;
// Task queue used to invoke LogStats() periodically. Tasks are executed on a
// worker thread but it does not necessarily have to be the same thread for
// each task.
rtc::TaskQueue task_queue_;
// Keeps track of if playout/recording are active or not. A combination
// of these states are used to determine when to start and stop the timer.
// Only used on the creating thread and not used to control any media flow.
bool playing_;
bool recording_;
// Raw pointer to AudioTransport instance. Supplied to RegisterAudioCallback()
// and it must outlive this object. It is not possible to change this member
// while any media is active. It is possible to start media without calling
// RegisterAudioCallback() but that will lead to ignored audio callbacks in
// both directions where native audio will be acive but no audio samples will
// be transported.
AudioTransport* audio_transport_cb_;
// The members below that are not annotated are protected by design. They are
// all set on the main thread (verified by |main_thread_checker_|) and then
// read on either the playout or recording audio thread. But, media will never
// be active when the member is set; hence no conflict exists. It is too
// complex to ensure and verify that this is actually the case.
// Sample rate in Hertz.
uint32_t rec_sample_rate_;
@ -135,93 +147,88 @@ class AudioDeviceBuffer {
size_t rec_channels_;
size_t play_channels_;
// Number of bytes per audio sample (2 or 4).
size_t rec_bytes_per_sample_;
size_t play_bytes_per_sample_;
// Byte buffer used for recorded audio samples. Size can be changed
// dynamically.
rtc::Buffer rec_buffer_;
// Keeps track of if playout/recording are active or not. A combination
// of these states are used to determine when to start and stop the timer.
// Only used on the creating thread and not used to control any media flow.
bool playing_ ACCESS_ON(main_thread_checker_);
bool recording_ ACCESS_ON(main_thread_checker_);
// Buffer used for audio samples to be played out. Size can be changed
// dynamically.
rtc::Buffer play_buffer_;
rtc::Buffer play_buffer_ ACCESS_ON(playout_thread_checker_);
// Byte buffer used for recorded audio samples. Size can be changed
// dynamically.
rtc::Buffer rec_buffer_ ACCESS_ON(recording_thread_checker_);
// AGC parameters.
#if !defined(WEBRTC_WIN)
uint32_t current_mic_level_ ACCESS_ON(recording_thread_checker_);
#else
// Windows uses a dedicated thread for volume APIs.
uint32_t current_mic_level_;
uint32_t new_mic_level_;
#endif
uint32_t new_mic_level_ ACCESS_ON(recording_thread_checker_);
// Contains true of a key-press has been detected.
bool typing_status_;
bool typing_status_ ACCESS_ON(recording_thread_checker_);
// Delay values used by the AEC.
int play_delay_ms_;
int rec_delay_ms_;
int play_delay_ms_ ACCESS_ON(recording_thread_checker_);
int rec_delay_ms_ ACCESS_ON(recording_thread_checker_);
// Contains a clock-drift measurement.
int clock_drift_;
int clock_drift_ ACCESS_ON(recording_thread_checker_);
// Counts number of times LogStats() has been called.
size_t num_stat_reports_;
size_t num_stat_reports_ ACCESS_ON(task_queue_);
// Total number of recording callbacks where the source provides 10ms audio
// data each time.
uint64_t rec_callbacks_;
uint64_t rec_callbacks_ ACCESS_ON(task_queue_);
// Total number of recording callbacks stored at the last timer task.
uint64_t last_rec_callbacks_;
uint64_t last_rec_callbacks_ ACCESS_ON(task_queue_);
// Total number of playback callbacks where the sink asks for 10ms audio
// data each time.
uint64_t play_callbacks_;
uint64_t play_callbacks_ ACCESS_ON(task_queue_);
// Total number of playout callbacks stored at the last timer task.
uint64_t last_play_callbacks_;
uint64_t last_play_callbacks_ ACCESS_ON(task_queue_);
// Total number of recorded audio samples.
uint64_t rec_samples_;
uint64_t rec_samples_ ACCESS_ON(task_queue_);
// Total number of recorded samples stored at the previous timer task.
uint64_t last_rec_samples_;
uint64_t last_rec_samples_ ACCESS_ON(task_queue_);
// Total number of played audio samples.
uint64_t play_samples_;
uint64_t play_samples_ ACCESS_ON(task_queue_);
// Total number of played samples stored at the previous timer task.
uint64_t last_play_samples_;
// Time stamp of last timer task (drives logging).
uint64_t last_timer_task_time_;
// Time stamp of last playout callback.
uint64_t last_playout_time_;
// An array where the position corresponds to time differences (in
// milliseconds) between two successive playout callbacks, and the stored
// value is the number of times a given time difference was found.
// Writing to the array is done without a lock since it is only read once at
// destruction when no audio is running.
uint32_t playout_diff_times_[kMaxDeltaTimeInMs + 1] = {0};
uint64_t last_play_samples_ ACCESS_ON(task_queue_);
// Contains max level (max(abs(x))) of recorded audio packets over the last
// 10 seconds where a new measurement is done twice per second. The level
// is reset to zero at each call to LogStats(). Only modified on the task
// queue thread.
int16_t max_rec_level_;
// is reset to zero at each call to LogStats().
int16_t max_rec_level_ ACCESS_ON(task_queue_);
// Contains max level of recorded audio packets over the last 10 seconds
// where a new measurement is done twice per second.
int16_t max_play_level_;
int16_t max_play_level_ ACCESS_ON(task_queue_);
// Time stamp of last timer task (drives logging).
uint64_t last_timer_task_time_ ACCESS_ON(task_queue_);
// Counts number of audio callbacks modulo 50 to create a signal when
// a new storage of audio stats shall be done.
// Only updated on the OS-specific audio thread that drives audio.
int16_t rec_stat_count_;
int16_t play_stat_count_;
int16_t rec_stat_count_ ACCESS_ON(recording_thread_checker_);
int16_t play_stat_count_ ACCESS_ON(playout_thread_checker_);
// Time stamps of when playout and recording starts.
uint64_t play_start_time_;
uint64_t rec_start_time_;
uint64_t play_start_time_ ACCESS_ON(main_thread_checker_);
uint64_t rec_start_time_ ACCESS_ON(main_thread_checker_);
// Set to true at construction and modified to false as soon as one audio-
// level estimate larger than zero is detected.

View File

@ -1496,9 +1496,7 @@ int32_t AudioDeviceModuleImpl::RegisterAudioCallback(
AudioTransport* audioCallback) {
LOG(INFO) << __FUNCTION__;
CriticalSectionScoped lock(&_critSectAudioCb);
_audioDeviceBuffer.RegisterAudioCallback(audioCallback);
return 0;
return _audioDeviceBuffer.RegisterAudioCallback(audioCallback);
}
// ----------------------------------------------------------------------------
@ -1756,13 +1754,8 @@ int32_t AudioDeviceModuleImpl::PlayoutSampleRate(
int32_t AudioDeviceModuleImpl::ResetAudioDevice() {
LOG(INFO) << __FUNCTION__;
CHECK_INITIALIZED();
if (_ptrAudioDevice->ResetAudioDevice() == -1) {
return -1;
}
return (0);
FATAL() << "Should never be called";
return -1;
}
// ----------------------------------------------------------------------------

View File

@ -1181,7 +1181,7 @@ int32_t AudioDeviceMac::InitPlayout() {
// Listen for format changes.
propertyAddress.mSelector = kAudioDevicePropertyStreamFormat;
WEBRTC_CA_RETURN_ON_ERR(AudioObjectAddPropertyListener(
WEBRTC_CA_LOG_WARN(AudioObjectAddPropertyListener(
_outputDeviceID, &propertyAddress, &objectListenerProc, this));
// Listen for processor overloads.
@ -1379,7 +1379,7 @@ int32_t AudioDeviceMac::InitRecording() {
// Listen for format changes
// TODO(xians): should we be using kAudioDevicePropertyDeviceHasChanged?
propertyAddress.mSelector = kAudioDevicePropertyStreamFormat;
WEBRTC_CA_RETURN_ON_ERR(AudioObjectAddPropertyListener(
WEBRTC_CA_LOG_WARN(AudioObjectAddPropertyListener(
_inputDeviceID, &propertyAddress, &objectListenerProc, this));
// Listen for processor overloads

View File

@ -633,7 +633,7 @@ TEST_F(AudioDeviceAPITest, StartAndStopPlayout) {
EXPECT_EQ(0, audio_device_->InitPlayout());
EXPECT_EQ(0, audio_device_->StartPlayout());
EXPECT_TRUE(audio_device_->Playing());
EXPECT_EQ(0, audio_device_->RegisterAudioCallback(audio_transport_));
EXPECT_EQ(-1, audio_device_->RegisterAudioCallback(audio_transport_));
EXPECT_EQ(0, audio_device_->StopPlayout());
EXPECT_FALSE(audio_device_->Playing());
EXPECT_EQ(0, audio_device_->RegisterAudioCallback(NULL));
@ -648,9 +648,10 @@ TEST_F(AudioDeviceAPITest, StartAndStopPlayout) {
EXPECT_EQ(0, audio_device_->InitPlayout());
EXPECT_EQ(0, audio_device_->StartPlayout());
EXPECT_TRUE(audio_device_->Playing());
EXPECT_EQ(0, audio_device_->RegisterAudioCallback(audio_transport_));
EXPECT_EQ(-1, audio_device_->RegisterAudioCallback(audio_transport_));
EXPECT_EQ(0, audio_device_->StopPlayout());
EXPECT_FALSE(audio_device_->Playing());
EXPECT_EQ(0, audio_device_->RegisterAudioCallback(NULL));
}
// repeat test for all devices
@ -663,9 +664,10 @@ TEST_F(AudioDeviceAPITest, StartAndStopPlayout) {
EXPECT_EQ(0, audio_device_->InitPlayout());
EXPECT_EQ(0, audio_device_->StartPlayout());
EXPECT_TRUE(audio_device_->Playing());
EXPECT_EQ(0, audio_device_->RegisterAudioCallback(audio_transport_));
EXPECT_EQ(-1, audio_device_->RegisterAudioCallback(audio_transport_));
EXPECT_EQ(0, audio_device_->StopPlayout());
EXPECT_FALSE(audio_device_->Playing());
EXPECT_EQ(0, audio_device_->RegisterAudioCallback(NULL));
}
}
}
@ -690,7 +692,7 @@ TEST_F(AudioDeviceAPITest, StartAndStopRecording) {
EXPECT_EQ(0, audio_device_->InitRecording());
EXPECT_EQ(0, audio_device_->StartRecording());
EXPECT_TRUE(audio_device_->Recording());
EXPECT_EQ(0, audio_device_->RegisterAudioCallback(audio_transport_));
EXPECT_EQ(-1, audio_device_->RegisterAudioCallback(audio_transport_));
EXPECT_EQ(0, audio_device_->StopRecording());
EXPECT_FALSE(audio_device_->Recording());
EXPECT_EQ(0, audio_device_->RegisterAudioCallback(NULL));
@ -705,9 +707,10 @@ TEST_F(AudioDeviceAPITest, StartAndStopRecording) {
EXPECT_EQ(0, audio_device_->InitRecording());
EXPECT_EQ(0, audio_device_->StartRecording());
EXPECT_TRUE(audio_device_->Recording());
EXPECT_EQ(0, audio_device_->RegisterAudioCallback(audio_transport_));
EXPECT_EQ(-1, audio_device_->RegisterAudioCallback(audio_transport_));
EXPECT_EQ(0, audio_device_->StopRecording());
EXPECT_FALSE(audio_device_->Recording());
EXPECT_EQ(0, audio_device_->RegisterAudioCallback(NULL));
}
// repeat test for all devices
@ -720,9 +723,10 @@ TEST_F(AudioDeviceAPITest, StartAndStopRecording) {
EXPECT_EQ(0, audio_device_->InitRecording());
EXPECT_EQ(0, audio_device_->StartRecording());
EXPECT_TRUE(audio_device_->Recording());
EXPECT_EQ(0, audio_device_->RegisterAudioCallback(audio_transport_));
EXPECT_EQ(-1, audio_device_->RegisterAudioCallback(audio_transport_));
EXPECT_EQ(0, audio_device_->StopRecording());
EXPECT_FALSE(audio_device_->Recording());
EXPECT_EQ(0, audio_device_->RegisterAudioCallback(NULL));
}
}
}
@ -1707,81 +1711,3 @@ TEST_F(AudioDeviceAPITest, PlayoutSampleRate) {
(sampleRate == 8000));
#endif
}
TEST_F(AudioDeviceAPITest, ResetAudioDevice) {
CheckInitialPlayoutStates();
CheckInitialRecordingStates();
EXPECT_EQ(0, audio_device_->SetPlayoutDevice(MACRO_DEFAULT_DEVICE));
EXPECT_EQ(0, audio_device_->SetRecordingDevice(MACRO_DEFAULT_DEVICE));
#if defined(WEBRTC_IOS)
// Not playing or recording, should just return 0
EXPECT_EQ(0, audio_device_->ResetAudioDevice());
EXPECT_EQ(0, audio_device_->InitRecording());
EXPECT_EQ(0, audio_device_->StartRecording());
EXPECT_EQ(0, audio_device_->InitPlayout());
EXPECT_EQ(0, audio_device_->StartPlayout());
for (int l=0; l<20; ++l)
{
TEST_LOG("Resetting sound device several time with pause %d ms\n", l);
EXPECT_EQ(0, audio_device_->ResetAudioDevice());
SleepMs(l);
}
#else
// Fail tests
EXPECT_EQ(-1, audio_device_->ResetAudioDevice());
// TODO(kjellander): Fix so these tests pass on Mac.
#if !defined(WEBRTC_MAC)
EXPECT_EQ(0, audio_device_->InitRecording());
EXPECT_EQ(0, audio_device_->StartRecording());
EXPECT_EQ(0, audio_device_->InitPlayout());
EXPECT_EQ(0, audio_device_->StartPlayout());
#endif
EXPECT_EQ(-1, audio_device_->ResetAudioDevice());
#endif
EXPECT_EQ(0, audio_device_->StopRecording());
EXPECT_EQ(0, audio_device_->StopPlayout());
}
TEST_F(AudioDeviceAPITest, SetPlayoutSpeaker) {
CheckInitialPlayoutStates();
EXPECT_EQ(0, audio_device_->SetPlayoutDevice(MACRO_DEFAULT_DEVICE));
bool loudspeakerOn(false);
#if defined(WEBRTC_IOS)
// Not playing or recording, should just return a success
EXPECT_EQ(0, audio_device_->SetLoudspeakerStatus(true));
EXPECT_EQ(0, audio_device_->GetLoudspeakerStatus(&loudspeakerOn));
EXPECT_TRUE(loudspeakerOn);
EXPECT_EQ(0, audio_device_->SetLoudspeakerStatus(false));
EXPECT_EQ(0, audio_device_->GetLoudspeakerStatus(&loudspeakerOn));
EXPECT_FALSE(loudspeakerOn);
EXPECT_EQ(0, audio_device_->InitPlayout());
EXPECT_EQ(0, audio_device_->StartPlayout());
EXPECT_EQ(0, audio_device_->SetLoudspeakerStatus(true));
EXPECT_EQ(0, audio_device_->GetLoudspeakerStatus(&loudspeakerOn));
EXPECT_TRUE(loudspeakerOn);
EXPECT_EQ(0, audio_device_->SetLoudspeakerStatus(false));
EXPECT_EQ(0, audio_device_->GetLoudspeakerStatus(&loudspeakerOn));
EXPECT_FALSE(loudspeakerOn);
#else
// Fail tests
EXPECT_EQ(-1, audio_device_->SetLoudspeakerStatus(true));
EXPECT_EQ(-1, audio_device_->SetLoudspeakerStatus(false));
EXPECT_EQ(-1, audio_device_->SetLoudspeakerStatus(true));
EXPECT_EQ(-1, audio_device_->SetLoudspeakerStatus(false));
// TODO(kjellander): Fix so these tests pass on Mac.
#if !defined(WEBRTC_MAC)
EXPECT_EQ(0, audio_device_->InitPlayout());
EXPECT_EQ(0, audio_device_->StartPlayout());
#endif
EXPECT_EQ(-1, audio_device_->GetLoudspeakerStatus(&loudspeakerOn));
#endif
EXPECT_EQ(0, audio_device_->StopPlayout());
}