Style guide reformatting of overuse_detector.{h,cc}

Review URL: https://webrtc-codereview.appspot.com/575006

git-svn-id: http://webrtc.googlecode.com/svn/trunk@2268 4adac7df-926f-26a2-2b94-8c16560cd09d
This commit is contained in:
astor@webrtc.org 2012-05-22 12:24:00 +00:00
parent bd48e71058
commit e231c61ba7
2 changed files with 383 additions and 413 deletions

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
@ -8,19 +8,19 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdlib.h> // abs
#if _WIN32
#include <windows.h>
#endif
#include "trace.h"
#include "overuse_detector.h"
#include "remote_rate_control.h"
#include "rtp_utility.h"
#include <math.h>
#include <stdlib.h> //abs
#include "modules/rtp_rtcp/source/overuse_detector.h"
#include "modules/rtp_rtcp/source/remote_rate_control.h"
#include "modules/rtp_rtcp/source/rtp_utility.h"
#include "system_wrappers/interface/trace.h"
#ifdef WEBRTC_BWE_MATLAB
extern MatlabEngine eng; // global variable defined elsewhere
extern MatlabEngine eng; // global variable defined elsewhere
#endif
#define INIT_CAPACITY_SLOPE 8.0/512.0
@ -30,421 +30,394 @@ extern MatlabEngine eng; // global variable defined elsewhere
namespace webrtc {
OverUseDetector::OverUseDetector()
:
_firstPacket(true),
_currentFrame(),
_prevFrame(),
_numOfDeltas(0),
_slope(INIT_CAPACITY_SLOPE),
_offset(0),
_E(),
_processNoise(),
_avgNoise(0.0),
_varNoise(500),
_threshold(DETECTOR_THRESHOLD),
_tsDeltaHist(),
_prevOffset(0.0),
_timeOverUsing(-1),
_overUseCounter(0),
_hypothesis(kBwNormal)
#ifdef WEBRTC_BWE_MATLAB
,_plot1(NULL),
_plot2(NULL),
_plot3(NULL),
_plot4(NULL)
: firstPacket_(true),
currentFrame_(),
prevFrame_(),
numOfDeltas_(0),
slope_(INIT_CAPACITY_SLOPE),
offset_(0),
E_(),
processNoise_(),
avgNoise_(0.0),
varNoise_(500),
threshold_(DETECTOR_THRESHOLD),
tsDeltaHist_(),
prevOffset_(0.0),
timeOverUsing_(-1),
overUseCounter_(0),
#ifndef WEBRTC_BWE_MATLAB
hypothesis_(kBwNormal) {
#else
plot1_(NULL),
plot2_(NULL),
plot3_(NULL),
plot4_(NULL) {
#endif
{
_E[0][0] = 100;
_E[1][1] = 1e-1;
_E[0][1] = _E[1][0] = 0;
_processNoise[0] = 1e-10;
_processNoise[1] = 1e-2;
E_[0][0] = 100;
E_[1][1] = 1e-1;
E_[0][1] = E_[1][0] = 0;
processNoise_[0] = 1e-10;
processNoise_[1] = 1e-2;
}
OverUseDetector::~OverUseDetector()
{
OverUseDetector::~OverUseDetector() {
#ifdef WEBRTC_BWE_MATLAB
if (_plot1)
{
eng.DeletePlot(_plot1);
_plot1 = NULL;
}
if (_plot2)
{
eng.DeletePlot(_plot2);
_plot2 = NULL;
}
if (_plot3)
{
eng.DeletePlot(_plot3);
_plot3 = NULL;
}
if (_plot4)
{
eng.DeletePlot(_plot4);
_plot4 = NULL;
}
if (plot1_) {
eng.DeletePlot(plot1_);
plot1_ = NULL;
}
if (plot2_) {
eng.DeletePlot(plot2_);
plot2_ = NULL;
}
if (plot3_) {
eng.DeletePlot(plot3_);
plot3_ = NULL;
}
if (plot4_) {
eng.DeletePlot(plot4_);
plot4_ = NULL;
}
#endif
_tsDeltaHist.clear();
tsDeltaHist_.clear();
}
void OverUseDetector::Reset()
{
_firstPacket = true;
_currentFrame._size = 0;
_currentFrame._completeTimeMs = -1;
_currentFrame._timestamp = -1;
_prevFrame._size = 0;
_prevFrame._completeTimeMs = -1;
_prevFrame._timestamp = -1;
_numOfDeltas = 0;
_slope = INIT_CAPACITY_SLOPE;
_offset = 0;
_E[0][0] = 100;
_E[1][1] = 1e-1;
_E[0][1] = _E[1][0] = 0;
_processNoise[0] = 1e-10;
_processNoise[1] = 1e-2;
_avgNoise = 0.0;
_varNoise = 500;
_threshold = DETECTOR_THRESHOLD;
_prevOffset = 0.0;
_timeOverUsing = -1;
_overUseCounter = 0;
_hypothesis = kBwNormal;
_tsDeltaHist.clear();
void OverUseDetector::Reset() {
firstPacket_ = true;
currentFrame_.size_ = 0;
currentFrame_.completeTimeMs_ = -1;
currentFrame_.timestamp_ = -1;
prevFrame_.size_ = 0;
prevFrame_.completeTimeMs_ = -1;
prevFrame_.timestamp_ = -1;
numOfDeltas_ = 0;
slope_ = INIT_CAPACITY_SLOPE;
offset_ = 0;
E_[0][0] = 100;
E_[1][1] = 1e-1;
E_[0][1] = E_[1][0] = 0;
processNoise_[0] = 1e-10;
processNoise_[1] = 1e-2;
avgNoise_ = 0.0;
varNoise_ = 500;
threshold_ = DETECTOR_THRESHOLD;
prevOffset_ = 0.0;
timeOverUsing_ = -1;
overUseCounter_ = 0;
hypothesis_ = kBwNormal;
tsDeltaHist_.clear();
}
bool OverUseDetector::Update(const WebRtcRTPHeader& rtpHeader,
const WebRtc_UWord16 packetSize,
const WebRtc_Word64 nowMS)
{
const WebRtc_Word64 nowMS) {
#ifdef WEBRTC_BWE_MATLAB
// Create plots
const WebRtc_Word64 startTimeMs = nowMS;
if (_plot1 == NULL)
{
_plot1 = eng.NewPlot(new MatlabPlot());
_plot1->AddLine(1000, "b.", "scatter");
}
if (_plot2 == NULL)
{
_plot2 = eng.NewPlot(new MatlabPlot());
_plot2->AddTimeLine(30, "b", "offset", startTimeMs);
_plot2->AddTimeLine(30, "r--", "limitPos", startTimeMs);
_plot2->AddTimeLine(30, "k.", "trigger", startTimeMs);
_plot2->AddTimeLine(30, "ko", "detection", startTimeMs);
//_plot2->AddTimeLine(30, "g", "slowMean", startTimeMs);
}
if (_plot3 == NULL)
{
_plot3 = eng.NewPlot(new MatlabPlot());
_plot3->AddTimeLine(30, "b", "noiseVar", startTimeMs);
}
if (_plot4 == NULL)
{
_plot4 = eng.NewPlot(new MatlabPlot());
//_plot4->AddTimeLine(60, "b", "p11", startTimeMs);
//_plot4->AddTimeLine(60, "r", "p12", startTimeMs);
_plot4->AddTimeLine(60, "g", "p22", startTimeMs);
//_plot4->AddTimeLine(60, "g--", "p22_hat", startTimeMs);
//_plot4->AddTimeLine(30, "b.-", "deltaFs", startTimeMs);
}
// Create plots
const WebRtc_Word64 startTimeMs = nowMS;
if (plot1_ == NULL) {
plot1_ = eng.NewPlot(new MatlabPlot());
plot1_->AddLine(1000, "b.", "scatter");
}
if (plot2_ == NULL) {
plot2_ = eng.NewPlot(new MatlabPlot());
plot2_->AddTimeLine(30, "b", "offset", startTimeMs);
plot2_->AddTimeLine(30, "r--", "limitPos", startTimeMs);
plot2_->AddTimeLine(30, "k.", "trigger", startTimeMs);
plot2_->AddTimeLine(30, "ko", "detection", startTimeMs);
// plot2_->AddTimeLine(30, "g", "slowMean", startTimeMs);
}
if (plot3_ == NULL) {
plot3_ = eng.NewPlot(new MatlabPlot());
plot3_->AddTimeLine(30, "b", "noiseVar", startTimeMs);
}
if (plot4_ == NULL) {
plot4_ = eng.NewPlot(new MatlabPlot());
// plot4_->AddTimeLine(60, "b", "p11", startTimeMs);
// plot4_->AddTimeLine(60, "r", "p12", startTimeMs);
plot4_->AddTimeLine(60, "g", "p22", startTimeMs);
// plot4_->AddTimeLine(60, "g--", "p22_hat", startTimeMs);
// plot4_->AddTimeLine(30, "b.-", "deltaFs", startTimeMs);
}
#endif
bool wrapped = false;
bool completeFrame = false;
if (_currentFrame._timestamp == -1)
{
_currentFrame._timestamp = rtpHeader.header.timestamp;
}
else if (ModuleRTPUtility::OldTimestamp(
rtpHeader.header.timestamp,
static_cast<WebRtc_UWord32>(_currentFrame._timestamp),
&wrapped))
{
// Don't update with old data
return completeFrame;
}
else if (rtpHeader.header.timestamp != _currentFrame._timestamp)
{
// First packet of a later frame, the previous frame sample is ready
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, -1, "Frame complete at %I64i", _currentFrame._completeTimeMs);
if (_prevFrame._completeTimeMs >= 0) // This is our second frame
{
WebRtc_Word64 tDelta = 0;
double tsDelta = 0;
// Check for wrap
ModuleRTPUtility::OldTimestamp(
static_cast<WebRtc_UWord32>(_prevFrame._timestamp),
static_cast<WebRtc_UWord32>(_currentFrame._timestamp),
&wrapped);
CompensatedTimeDelta(_currentFrame, _prevFrame, tDelta, tsDelta, wrapped);
UpdateKalman(tDelta, tsDelta, _currentFrame._size, _prevFrame._size);
}
// The new timestamp is now the current frame,
// and the old timestamp becomes the previous frame.
_prevFrame = _currentFrame;
_currentFrame._timestamp = rtpHeader.header.timestamp;
_currentFrame._size = 0;
_currentFrame._completeTimeMs = -1;
completeFrame = true;
}
// Accumulate the frame size
_currentFrame._size += packetSize;
_currentFrame._completeTimeMs = nowMS;
bool wrapped = false;
bool completeFrame = false;
if (currentFrame_.timestamp_ == -1) {
currentFrame_.timestamp_ = rtpHeader.header.timestamp;
} else if (ModuleRTPUtility::OldTimestamp(
rtpHeader.header.timestamp,
static_cast<WebRtc_UWord32>(currentFrame_.timestamp_),
&wrapped)) {
// Don't update with old data
return completeFrame;
} else if (rtpHeader.header.timestamp != currentFrame_.timestamp_) {
// First packet of a later frame, the previous frame sample is ready
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, -1,
"Frame complete at %I64i", currentFrame_.completeTimeMs_);
if (prevFrame_.completeTimeMs_ >= 0) { // This is our second frame
WebRtc_Word64 tDelta = 0;
double tsDelta = 0;
// Check for wrap
ModuleRTPUtility::OldTimestamp(
static_cast<WebRtc_UWord32>(prevFrame_.timestamp_),
static_cast<WebRtc_UWord32>(currentFrame_.timestamp_),
&wrapped);
CompensatedTimeDelta(currentFrame_, prevFrame_, tDelta, tsDelta,
wrapped);
UpdateKalman(tDelta, tsDelta, currentFrame_.size_,
prevFrame_.size_);
}
// The new timestamp is now the current frame,
// and the old timestamp becomes the previous frame.
prevFrame_ = currentFrame_;
currentFrame_.timestamp_ = rtpHeader.header.timestamp;
currentFrame_.size_ = 0;
currentFrame_.completeTimeMs_ = -1;
completeFrame = true;
}
// Accumulate the frame size
currentFrame_.size_ += packetSize;
currentFrame_.completeTimeMs_ = nowMS;
return completeFrame;
}
BandwidthUsage OverUseDetector::State() const
{
return _hypothesis;
BandwidthUsage OverUseDetector::State() const {
return hypothesis_;
}
double OverUseDetector::NoiseVar() const
{
return _varNoise;
double OverUseDetector::NoiseVar() const {
return varNoise_;
}
void OverUseDetector::SetRateControlRegion(RateControlRegion region)
{
switch (region)
{
case kRcMaxUnknown:
{
_threshold = DETECTOR_THRESHOLD;
break;
}
void OverUseDetector::SetRateControlRegion(RateControlRegion region) {
switch (region) {
case kRcMaxUnknown: {
threshold_ = DETECTOR_THRESHOLD;
break;
}
case kRcAboveMax:
case kRcNearMax:
{
_threshold = DETECTOR_THRESHOLD / 2;
break;
}
case kRcNearMax: {
threshold_ = DETECTOR_THRESHOLD / 2;
break;
}
}
}
void OverUseDetector::CompensatedTimeDelta(const FrameSample& currentFrame, const FrameSample& prevFrame, WebRtc_Word64& tDelta,
double& tsDelta, bool wrapped)
{
_numOfDeltas++;
if (_numOfDeltas > 1000)
{
_numOfDeltas = 1000;
}
// Add wrap-around compensation
WebRtc_Word64 wrapCompensation = 0;
if (wrapped)
{
wrapCompensation = static_cast<WebRtc_Word64>(1)<<32;
}
tsDelta = (currentFrame._timestamp + wrapCompensation - prevFrame._timestamp) / 90.0;
tDelta = currentFrame._completeTimeMs - prevFrame._completeTimeMs;
assert(tsDelta > 0);
void OverUseDetector::CompensatedTimeDelta(const FrameSample& currentFrame,
const FrameSample& prevFrame,
WebRtc_Word64& tDelta,
double& tsDelta,
bool wrapped) {
numOfDeltas_++;
if (numOfDeltas_ > 1000) {
numOfDeltas_ = 1000;
}
// Add wrap-around compensation
WebRtc_Word64 wrapCompensation = 0;
if (wrapped) {
wrapCompensation = static_cast<WebRtc_Word64>(1)<<32;
}
tsDelta = (currentFrame.timestamp_
+ wrapCompensation
- prevFrame.timestamp_) / 90.0;
tDelta = currentFrame.completeTimeMs_ - prevFrame.completeTimeMs_;
assert(tsDelta > 0);
}
double OverUseDetector::CurrentDrift()
{
return 1.0;
double OverUseDetector::CurrentDrift() {
return 1.0;
}
void OverUseDetector::UpdateKalman(WebRtc_Word64 tDelta, double tsDelta, WebRtc_UWord32 frameSize, WebRtc_UWord32 prevFrameSize)
{
const double minFramePeriod = UpdateMinFramePeriod(tsDelta);
const double drift = CurrentDrift();
// Compensate for drift
const double tTsDelta = tDelta - tsDelta / drift;
double fsDelta = static_cast<double>(frameSize) - prevFrameSize;
void OverUseDetector::UpdateKalman(WebRtc_Word64 tDelta,
double tsDelta,
WebRtc_UWord32 frameSize,
WebRtc_UWord32 prevFrameSize) {
const double minFramePeriod = UpdateMinFramePeriod(tsDelta);
const double drift = CurrentDrift();
// Compensate for drift
const double tTsDelta = tDelta - tsDelta / drift;
double fsDelta = static_cast<double>(frameSize) - prevFrameSize;
// Update the Kalman filter
const double scaleFactor = minFramePeriod / (1000.0 / 30.0);
_E[0][0] += _processNoise[0] * scaleFactor;
_E[1][1] += _processNoise[1] * scaleFactor;
// Update the Kalman filter
const double scaleFactor = minFramePeriod / (1000.0 / 30.0);
E_[0][0] += processNoise_[0] * scaleFactor;
E_[1][1] += processNoise_[1] * scaleFactor;
if ((_hypothesis == kBwOverusing && _offset < _prevOffset) ||
(_hypothesis == kBwUnderUsing && _offset > _prevOffset))
{
_E[1][1] += 10 * _processNoise[1] * scaleFactor;
}
if ((hypothesis_ == kBwOverusing && offset_ < prevOffset_) ||
(hypothesis_ == kBwUnderUsing && offset_ > prevOffset_)) {
E_[1][1] += 10 * processNoise_[1] * scaleFactor;
}
const double h[2] = {fsDelta, 1.0};
const double Eh[2] = {_E[0][0]*h[0] + _E[0][1]*h[1],
_E[1][0]*h[0] + _E[1][1]*h[1]};
const double h[2] = {fsDelta, 1.0};
const double Eh[2] = {E_[0][0]*h[0] + E_[0][1]*h[1],
E_[1][0]*h[0] + E_[1][1]*h[1]};
const double residual = tTsDelta - _slope*h[0] - _offset;
const double residual = tTsDelta - slope_*h[0] - offset_;
const bool stableState = (BWE_MIN(_numOfDeltas, 60) * abs(_offset) < _threshold);
// We try to filter out very late frames. For instance periodic key
// frames doesn't fit the Gaussian model well.
if (abs(residual) < 3 * sqrt(_varNoise))
{
UpdateNoiseEstimate(residual, minFramePeriod, stableState);
}
else
{
UpdateNoiseEstimate(3 * sqrt(_varNoise), minFramePeriod, stableState);
}
const bool stableState =
(BWE_MIN(numOfDeltas_, 60) * abs(offset_) < threshold_);
// We try to filter out very late frames. For instance periodic key
// frames doesn't fit the Gaussian model well.
if (abs(residual) < 3 * sqrt(varNoise_)) {
UpdateNoiseEstimate(residual, minFramePeriod, stableState);
} else {
UpdateNoiseEstimate(3 * sqrt(varNoise_), minFramePeriod, stableState);
}
const double denom = _varNoise + h[0]*Eh[0] + h[1]*Eh[1];
const double denom = varNoise_ + h[0]*Eh[0] + h[1]*Eh[1];
const double K[2] = {Eh[0] / denom,
Eh[1] / denom};
const double K[2] = {Eh[0] / denom,
Eh[1] / denom};
const double IKh[2][2] = {{1.0 - K[0]*h[0], -K[0]*h[1]},
{-K[1]*h[0], 1.0 - K[1]*h[1]}};
const double e00 = _E[0][0];
const double e01 = _E[0][1];
const double IKh[2][2] = {{1.0 - K[0]*h[0], -K[0]*h[1]},
{-K[1]*h[0], 1.0 - K[1]*h[1]}};
const double e00 = E_[0][0];
const double e01 = E_[0][1];
// Update state
_E[0][0] = e00 * IKh[0][0] + _E[1][0] * IKh[0][1];
_E[0][1] = e01 * IKh[0][0] + _E[1][1] * IKh[0][1];
_E[1][0] = e00 * IKh[1][0] + _E[1][0] * IKh[1][1];
_E[1][1] = e01 * IKh[1][0] + _E[1][1] * IKh[1][1];
// Update state
E_[0][0] = e00 * IKh[0][0] + E_[1][0] * IKh[0][1];
E_[0][1] = e01 * IKh[0][0] + E_[1][1] * IKh[0][1];
E_[1][0] = e00 * IKh[1][0] + E_[1][0] * IKh[1][1];
E_[1][1] = e01 * IKh[1][0] + E_[1][1] * IKh[1][1];
// Covariance matrix, must be positive semi-definite
assert(_E[0][0] + _E[1][1] >= 0 &&
_E[0][0] * _E[1][1] - _E[0][1] * _E[1][0] >= 0 &&
_E[0][0] >= 0);
// Covariance matrix, must be positive semi-definite
assert(E_[0][0] + E_[1][1] >= 0 &&
E_[0][0] * E_[1][1] - E_[0][1] * E_[1][0] >= 0 &&
E_[0][0] >= 0);
#ifdef WEBRTC_BWE_MATLAB
//_plot4->Append("p11",_E[0][0]);
//_plot4->Append("p12",_E[0][1]);
_plot4->Append("p22",_E[1][1]);
//_plot4->Append("p22_hat", 0.5*(_processNoise[1] +
// sqrt(_processNoise[1]*(_processNoise[1] + 4*_varNoise))));
//_plot4->Append("deltaFs", fsDelta);
_plot4->Plot();
// plot4_->Append("p11",E_[0][0]);
// plot4_->Append("p12",E_[0][1]);
plot4_->Append("p22", E_[1][1]);
// plot4_->Append("p22_hat", 0.5*(processNoise_[1] +
// sqrt(processNoise_[1]*(processNoise_[1] + 4*varNoise_))));
// plot4_->Append("deltaFs", fsDelta);
plot4_->Plot();
#endif
_slope = _slope + K[0] * residual;
_prevOffset = _offset;
_offset = _offset + K[1] * residual;
slope_ = slope_ + K[0] * residual;
prevOffset_ = offset_;
offset_ = offset_ + K[1] * residual;
Detect(tsDelta);
Detect(tsDelta);
#ifdef WEBRTC_BWE_MATLAB
_plot1->Append("scatter", static_cast<double>(_currentFrame._size) - _prevFrame._size,
static_cast<double>(tDelta-tsDelta));
_plot1->MakeTrend("scatter", "slope", _slope, _offset, "k-");
_plot1->MakeTrend("scatter", "thresholdPos", _slope, _offset + 2 * sqrt(_varNoise), "r-");
_plot1->MakeTrend("scatter", "thresholdNeg", _slope, _offset - 2 * sqrt(_varNoise), "r-");
_plot1->Plot();
plot1_->Append("scatter",
static_cast<double>(currentFrame_.size_) - prevFrame_.size_,
static_cast<double>(tDelta-tsDelta));
plot1_->MakeTrend("scatter", "slope", slope_, offset_, "k-");
plot1_->MakeTrend("scatter", "thresholdPos",
slope_, offset_ + 2 * sqrt(varNoise_), "r-");
plot1_->MakeTrend("scatter", "thresholdNeg",
slope_, offset_ - 2 * sqrt(varNoise_), "r-");
plot1_->Plot();
_plot2->Append("offset", _offset);
_plot2->Append("limitPos", _threshold/BWE_MIN(_numOfDeltas, 60));
_plot2->Plot();
plot2_->Append("offset", offset_);
plot2_->Append("limitPos", threshold_/BWE_MIN(numOfDeltas_, 60));
plot2_->Plot();
_plot3->Append("noiseVar", _varNoise);
_plot3->Plot();
plot3_->Append("noiseVar", varNoise_);
plot3_->Plot();
#endif
}
double OverUseDetector::UpdateMinFramePeriod(double tsDelta) {
double minFramePeriod = tsDelta;
if (_tsDeltaHist.size() >= MIN_FRAME_PERIOD_HISTORY_LEN) {
std::list<double>::iterator firstItem = _tsDeltaHist.begin();
_tsDeltaHist.erase(firstItem);
if (tsDeltaHist_.size() >= MIN_FRAME_PERIOD_HISTORY_LEN) {
std::list<double>::iterator firstItem = tsDeltaHist_.begin();
tsDeltaHist_.erase(firstItem);
}
std::list<double>::iterator it = _tsDeltaHist.begin();
for (; it != _tsDeltaHist.end(); it++) {
std::list<double>::iterator it = tsDeltaHist_.begin();
for (; it != tsDeltaHist_.end(); it++) {
minFramePeriod = BWE_MIN(*it, minFramePeriod);
}
_tsDeltaHist.push_back(tsDelta);
tsDeltaHist_.push_back(tsDelta);
return minFramePeriod;
}
void OverUseDetector::UpdateNoiseEstimate(double residual, double tsDelta, bool stableState)
{
if (!stableState)
{
return;
}
// Faster filter during startup to faster adapt to the jitter level of the network
// alpha is tuned for 30 frames per second, but
double alpha = 0.01;
if (_numOfDeltas > 10*30)
{
alpha = 0.002;
}
// Only update the noise estimate if we're not over-using
// beta is a function of alpha and the time delta since
// the previous update.
const double beta = pow(1 - alpha, tsDelta * 30.0 / 1000.0);
_avgNoise = beta * _avgNoise + (1 - beta) * residual;
_varNoise = beta * _varNoise + (1 - beta) * (_avgNoise - residual) * (_avgNoise - residual);
if (_varNoise < 1e-7)
{
_varNoise = 1e-7;
}
void OverUseDetector::UpdateNoiseEstimate(double residual,
double tsDelta,
bool stableState) {
if (!stableState) {
return;
}
// Faster filter during startup to faster adapt to the jitter level
// of the network alpha is tuned for 30 frames per second, but
double alpha = 0.01;
if (numOfDeltas_ > 10*30) {
alpha = 0.002;
}
// Only update the noise estimate if we're not over-using
// beta is a function of alpha and the time delta since
// the previous update.
const double beta = pow(1 - alpha, tsDelta * 30.0 / 1000.0);
avgNoise_ = beta * avgNoise_
+ (1 - beta) * residual;
varNoise_ = beta * varNoise_
+ (1 - beta) * (avgNoise_ - residual) * (avgNoise_ - residual);
if (varNoise_ < 1e-7) {
varNoise_ = 1e-7;
}
}
BandwidthUsage OverUseDetector::Detect(double tsDelta)
{
if (_numOfDeltas < 2)
{
return kBwNormal;
}
const double T = BWE_MIN(_numOfDeltas, 60) * _offset;
if (abs(T) > _threshold)
{
if (_offset > 0)
{
if (_timeOverUsing == -1)
{
// Initialize the timer. Assume that we've been
// over-using half of the time since the previous
// sample.
_timeOverUsing = tsDelta / 2;
}
else
{
// Increment timer
_timeOverUsing += tsDelta;
}
_overUseCounter++;
if (_timeOverUsing > OVER_USING_TIME_THRESHOLD && _overUseCounter > 1)
{
if (_offset >= _prevOffset)
{
BandwidthUsage OverUseDetector::Detect(double tsDelta) {
if (numOfDeltas_ < 2) {
return kBwNormal;
}
const double T = BWE_MIN(numOfDeltas_, 60) * offset_;
if (abs(T) > threshold_) {
if (offset_ > 0) {
if (timeOverUsing_ == -1) {
// Initialize the timer. Assume that we've been
// over-using half of the time since the previous
// sample.
timeOverUsing_ = tsDelta / 2;
} else {
// Increment timer
timeOverUsing_ += tsDelta;
}
overUseCounter_++;
if (timeOverUsing_ > OVER_USING_TIME_THRESHOLD
&& overUseCounter_ > 1) {
if (offset_ >= prevOffset_) {
#ifdef _DEBUG
if (_hypothesis != kBwOverusing)
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, -1, "BWE: kBwOverusing");
if (hypothesis_ != kBwOverusing) {
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, -1, "BWE: kBwOverusing");
}
#endif
_timeOverUsing = 0;
_overUseCounter = 0;
_hypothesis = kBwOverusing;
timeOverUsing_ = 0;
overUseCounter_ = 0;
hypothesis_ = kBwOverusing;
#ifdef WEBRTC_BWE_MATLAB
_plot2->Append("detection",_offset); // plot it later
#endif
}
}
#ifdef WEBRTC_BWE_MATLAB
_plot2->Append("trigger",_offset); // plot it later
plot2_->Append("detection", offset_); // plot it later
#endif
}
else
{
#ifdef _DEBUG
if (_hypothesis != kBwUnderUsing)
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, -1, "BWE: kBwUnderUsing");
}
#ifdef WEBRTC_BWE_MATLAB
plot2_->Append("trigger", offset_); // plot it later
#endif
_timeOverUsing = -1;
_overUseCounter = 0;
_hypothesis = kBwUnderUsing;
}
}
else
{
} else {
#ifdef _DEBUG
if (_hypothesis != kBwNormal)
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, -1, "BWE: kBwNormal");
if (hypothesis_ != kBwUnderUsing) {
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, -1, "BWE: kBwUnderUsing");
}
#endif
_timeOverUsing = -1;
_overUseCounter = 0;
_hypothesis = kBwNormal;
timeOverUsing_ = -1;
overUseCounter_ = 0;
hypothesis_ = kBwUnderUsing;
}
return _hypothesis;
} else {
#ifdef _DEBUG
if (hypothesis_ != kBwNormal) {
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, -1, "BWE: kBwNormal");
}
#endif
timeOverUsing_ = -1;
overUseCounter_ = 0;
hypothesis_ = kBwNormal;
}
return hypothesis_;
}
} // namespace webrtc
} // namespace webrtc

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
@ -7,15 +7,14 @@
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_RTP_RTCP_SOURCE_OVERUSE_DETECTOR_H_
#define WEBRTC_MODULES_RTP_RTCP_SOURCE_OVERUSE_DETECTOR_H_
#include <list>
#include "bwe_defines.h"
#include "module_common_types.h"
#include "typedefs.h"
#include "modules/interface/module_common_types.h"
#include "modules/rtp_rtcp/source/bwe_defines.h"
#include "typedefs.h" // NOLINT(build/include)
#ifdef WEBRTC_BWE_MATLAB
#include "../test/BWEStandAlone/MatlabPlot.h"
@ -24,67 +23,65 @@
namespace webrtc {
enum RateControlRegion;
class OverUseDetector
{
public:
OverUseDetector();
~OverUseDetector();
bool Update(const WebRtcRTPHeader& rtpHeader,
const WebRtc_UWord16 packetSize,
const WebRtc_Word64 nowMS);
BandwidthUsage State() const;
void Reset();
double NoiseVar() const;
void SetRateControlRegion(RateControlRegion region);
class OverUseDetector {
public:
OverUseDetector();
~OverUseDetector();
bool Update(const WebRtcRTPHeader& rtpHeader,
const WebRtc_UWord16 packetSize,
const WebRtc_Word64 nowMS);
BandwidthUsage State() const;
void Reset();
double NoiseVar() const;
void SetRateControlRegion(RateControlRegion region);
private:
struct FrameSample
{
FrameSample() : _size(0), _completeTimeMs(-1), _timestamp(-1) {}
private:
struct FrameSample {
FrameSample() : size_(0), completeTimeMs_(-1), timestamp_(-1) {}
WebRtc_UWord32 _size;
WebRtc_Word64 _completeTimeMs;
WebRtc_Word64 _timestamp;
};
WebRtc_UWord32 size_;
WebRtc_Word64 completeTimeMs_;
WebRtc_Word64 timestamp_;
};
void CompensatedTimeDelta(const FrameSample& currentFrame,
const FrameSample& prevFrame,
WebRtc_Word64& tDelta,
double& tsDelta,
bool wrapped);
void UpdateKalman(WebRtc_Word64 tDelta,
double tsDelta,
WebRtc_UWord32 frameSize,
WebRtc_UWord32 prevFrameSize);
double UpdateMinFramePeriod(double tsDelta);
void UpdateNoiseEstimate(double residual, double tsDelta, bool stableState);
BandwidthUsage Detect(double tsDelta);
double CurrentDrift();
void CompensatedTimeDelta(const FrameSample& currentFrame,
const FrameSample& prevFrame,
WebRtc_Word64& tDelta,
double& tsDelta,
bool wrapped);
void UpdateKalman(WebRtc_Word64 tDelta,
double tsDelta,
WebRtc_UWord32 frameSize,
WebRtc_UWord32 prevFrameSize);
double UpdateMinFramePeriod(double tsDelta);
void UpdateNoiseEstimate(double residual, double tsDelta, bool stableState);
BandwidthUsage Detect(double tsDelta);
double CurrentDrift();
bool _firstPacket;
FrameSample _currentFrame;
FrameSample _prevFrame;
WebRtc_UWord16 _numOfDeltas;
double _slope;
double _offset;
double _E[2][2];
double _processNoise[2];
double _avgNoise;
double _varNoise;
double _threshold;
std::list<double> _tsDeltaHist;
double _prevOffset;
double _timeOverUsing;
WebRtc_UWord16 _overUseCounter;
BandwidthUsage _hypothesis;
bool firstPacket_;
FrameSample currentFrame_;
FrameSample prevFrame_;
WebRtc_UWord16 numOfDeltas_;
double slope_;
double offset_;
double E_[2][2];
double processNoise_[2];
double avgNoise_;
double varNoise_;
double threshold_;
std::list<double> tsDeltaHist_;
double prevOffset_;
double timeOverUsing_;
WebRtc_UWord16 overUseCounter_;
BandwidthUsage hypothesis_;
#ifdef WEBRTC_BWE_MATLAB
MatlabPlot* _plot1;
MatlabPlot* _plot2;
MatlabPlot* _plot3;
MatlabPlot* _plot4;
MatlabPlot* plot1_;
MatlabPlot* plot2_;
MatlabPlot* plot3_;
MatlabPlot* plot4_;
#endif
};
} // namespace webrtc
} // namespace webrtc
#endif // WEBRTC_MODULES_RTP_RTCP_SOURCE_OVERUSE_DETECTOR_H_
#endif // WEBRTC_MODULES_RTP_RTCP_SOURCE_OVERUSE_DETECTOR_H_