BoundedInlineVector: Vector class of bounded size with inline allocation

Selling point is that it never touches the heap. Intended use case is
cheaply returning a variable, bounded, and small number of things from
a function.

Specifically, there are situations where we'd like to return things like

  ArrayView<ArrayView<float>>

where we currently have to allocate an array of ArrayView<float> for
the outer ArrayView to point to, which is a bother; however, although
the outer ArrayView is of variable size, that size is statically
guaranteed to not exceed some small constant. After this CL, we'll be
able to instead return

  BoundedInlineVector<ArrayView<float>, kSmallConstant>

which is much more convenient. We already had the option of returning e.g.

  std::vector<ArrayView<float>>

but that would bloat our binary with code to handle heap allocations
in places we'd rather be lean and mean.

https://godbolt.org/z/r-vcPj demonstrates that the overhead compared to
a raw C array + a size is ~zero.

Bug: webrtc:11391
Change-Id: Ifb6d937193052588be641aa62cc67ba0ec64ded6
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/168944
Commit-Queue: Karl Wiberg <kwiberg@webrtc.org>
Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org>
Reviewed-by: Per Åhgren <peah@webrtc.org>
Reviewed-by: Danil Chapovalov <danilchap@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#30663}
This commit is contained in:
Karl Wiberg 2020-03-02 20:23:41 +01:00 committed by Commit Bot
parent f52d3ed084
commit c126937564
4 changed files with 479 additions and 0 deletions

View File

@ -325,6 +325,12 @@ rtc_source_set("sanitizer") {
deps = [ "//third_party/abseil-cpp/absl/meta:type_traits" ]
}
rtc_source_set("bounded_inline_vector") {
public = [ "bounded_inline_vector.h" ]
sources = [ "bounded_inline_vector_impl.h" ]
deps = [ ":checks" ]
}
rtc_source_set("divide_round") {
sources = [ "numerics/divide_round.h" ]
deps = [
@ -1123,6 +1129,7 @@ if (rtc_include_tests) {
"base64_unittest.cc",
"bind_unittest.cc",
"bit_buffer_unittest.cc",
"bounded_inline_vector_unittest.cc",
"buffer_queue_unittest.cc",
"buffer_unittest.cc",
"byte_buffer_unittest.cc",
@ -1165,6 +1172,7 @@ if (rtc_include_tests) {
sources += [ "win/windows_version_unittest.cc" ]
}
deps = [
":bounded_inline_vector",
":checks",
":divide_round",
":gunit_helpers",

View File

@ -0,0 +1,138 @@
/*
* Copyright 2020 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef RTC_BASE_BOUNDED_INLINE_VECTOR_H_
#define RTC_BASE_BOUNDED_INLINE_VECTOR_H_
#include <stdint.h>
#include <memory>
#include <type_traits>
#include <utility>
#include "rtc_base/bounded_inline_vector_impl.h"
#include "rtc_base/checks.h"
namespace webrtc {
// A small std::vector-like type whose capacity is a compile-time constant. It
// stores all data inline and never heap allocates (beyond what its element type
// requires). Trying to grow it beyond its constant capacity is an error.
//
// TODO(bugs.webrtc.org/11391): Comparison operators.
// TODO(bugs.webrtc.org/11391): Methods for adding and deleting elements.
template <typename T, int fixed_capacity>
class BoundedInlineVector {
static_assert(!std::is_const<T>::value, "T may not be const");
static_assert(fixed_capacity > 0, "Capacity must be strictly positive");
public:
using value_type = T;
using const_iterator = const T*;
BoundedInlineVector() = default;
BoundedInlineVector(const BoundedInlineVector&) = default;
BoundedInlineVector(BoundedInlineVector&&) = default;
BoundedInlineVector& operator=(const BoundedInlineVector&) = default;
BoundedInlineVector& operator=(BoundedInlineVector&&) = default;
~BoundedInlineVector() = default;
// This constructor is implicit, to make it possible to write e.g.
//
// BoundedInlineVector<double, 7> x = {2.72, 3.14};
//
// and
//
// BoundedInlineVector<double, 7> GetConstants() {
// return {2.72, 3.14};
// }
template <typename... Ts,
typename std::enable_if_t<
bounded_inline_vector_impl::AllConvertible<T, Ts...>::value>* =
nullptr>
BoundedInlineVector(Ts&&... elements) // NOLINT(runtime/explicit)
: storage_(std::forward<Ts>(elements)...) {
static_assert(sizeof...(Ts) <= fixed_capacity, "");
}
template <
int other_capacity,
typename std::enable_if_t<other_capacity != fixed_capacity>* = nullptr>
BoundedInlineVector(const BoundedInlineVector<T, other_capacity>& other) {
RTC_DCHECK_LE(other.size(), fixed_capacity);
bounded_inline_vector_impl::CopyElements(other.data(), other.size(),
storage_.data, &storage_.size);
}
template <
int other_capacity,
typename std::enable_if_t<other_capacity != fixed_capacity>* = nullptr>
BoundedInlineVector(BoundedInlineVector<T, other_capacity>&& other) {
RTC_DCHECK_LE(other.size(), fixed_capacity);
bounded_inline_vector_impl::MoveElements(other.data(), other.size(),
storage_.data, &storage_.size);
}
template <
int other_capacity,
typename std::enable_if_t<other_capacity != fixed_capacity>* = nullptr>
BoundedInlineVector& operator=(
const BoundedInlineVector<T, other_capacity>& other) {
bounded_inline_vector_impl::DestroyElements(storage_.data, storage_.size);
RTC_DCHECK_LE(other.size(), fixed_capacity);
bounded_inline_vector_impl::CopyElements(other.data(), other.size(),
storage_.data, &storage_.size);
return *this;
}
template <
int other_capacity,
typename std::enable_if_t<other_capacity != fixed_capacity>* = nullptr>
BoundedInlineVector& operator=(
BoundedInlineVector<T, other_capacity>&& other) {
bounded_inline_vector_impl::DestroyElements(storage_.data, storage_.size);
RTC_DCHECK_LE(other.size(), fixed_capacity);
bounded_inline_vector_impl::MoveElements(other.data(), other.size(),
storage_.data, &storage_.size);
return *this;
}
bool empty() const { return storage_.size == 0; }
int size() const { return storage_.size; }
constexpr int capacity() const { return fixed_capacity; }
const T* data() const { return storage_.data; }
T* data() { return storage_.data; }
const T& operator[](int index) const {
RTC_DCHECK_GE(index, 0);
RTC_DCHECK_LT(index, storage_.size);
return storage_.data[index];
}
T& operator[](int index) {
RTC_DCHECK_GE(index, 0);
RTC_DCHECK_LT(index, storage_.size);
return storage_.data[index];
}
T* begin() { return storage_.data; }
T* end() { return storage_.data + storage_.size; }
const T* begin() const { return storage_.data; }
const T* end() const { return storage_.data + storage_.size; }
const T* cbegin() const { return storage_.data; }
const T* cend() const { return storage_.data + storage_.size; }
private:
bounded_inline_vector_impl::Storage<T, fixed_capacity> storage_;
};
} // namespace webrtc
#endif // RTC_BASE_BOUNDED_INLINE_VECTOR_H_

View File

@ -0,0 +1,215 @@
/*
* Copyright 2020 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef RTC_BASE_BOUNDED_INLINE_VECTOR_IMPL_H_
#define RTC_BASE_BOUNDED_INLINE_VECTOR_IMPL_H_
#include <stdint.h>
#include <cstring>
#include <memory>
#include <type_traits>
#include <utility>
namespace webrtc {
namespace bounded_inline_vector_impl {
template <bool...>
struct BoolPack;
// Tests if all its parameters (x0, x1, ..., xn) are true. The implementation
// checks whether (x0, x1, ..., xn, true) == (true, x0, x1, ..., xn), which is
// true iff true == x0 && x0 == x1 && x1 == x2 ... && xn-1 == xn && xn == true.
template <bool... Bs>
using AllTrue = std::is_same<BoolPack<Bs..., true>, BoolPack<true, Bs...>>;
template <typename To, typename... Froms>
using AllConvertible = AllTrue<std::is_convertible<Froms, To>::value...>;
// Initializes part of an uninitialized array. Unlike normal array
// initialization, does not zero the remaining array elements. Caller is
// responsible for ensuring that there is enough space in `data`.
template <typename T>
void InitializeElements(T* data) {}
template <typename T, typename U, typename... Us>
void InitializeElements(T* data, U&& element, Us&&... elements) {
// Placement new, because we construct a new object in uninitialized memory.
::new (data) T(std::forward<U>(element));
InitializeElements(data + 1, std::forward<Us>(elements)...);
}
// Copies from source to uninitialized destination. Caller is responsible for
// ensuring that there is enough space in `dst_data`.
template <typename T>
void CopyElements(const T* src_data, int src_size, T* dst_data, int* dst_size) {
if /*constexpr*/ (std::is_trivially_copy_constructible<T>::value) {
std::memcpy(dst_data, src_data, src_size * sizeof(T));
} else {
std::uninitialized_copy_n(src_data, src_size, dst_data);
}
*dst_size = src_size;
}
// Moves from source to uninitialized destination. Caller is responsible for
// ensuring that there is enough space in `dst_data`.
template <typename T>
void MoveElements(T* src_data, int src_size, T* dst_data, int* dst_size) {
if /*constexpr*/ (std::is_trivially_move_constructible<T>::value) {
std::memcpy(dst_data, src_data, src_size * sizeof(T));
} else {
// TODO(kwiberg): Use std::uninitialized_move_n() instead (C++17).
for (int i = 0; i < src_size; ++i) {
// Placement new, because we create a new object in uninitialized
// memory.
::new (&dst_data[i]) T(std::move(src_data[i]));
}
}
*dst_size = src_size;
}
// Destroys elements, leaving them uninitialized.
template <typename T>
void DestroyElements(T* data, int size) {
if /*constexpr*/ (!std::is_trivially_destructible<T>::value) {
for (int i = 0; i < size; ++i) {
data[i].~T();
}
}
}
// If elements are trivial and the total capacity is at most this many bytes,
// copy everything instead of just the elements that are in use; this is more
// efficient, and makes BoundedInlineVector trivially copyable.
static constexpr int kSmallSize = 64;
// Storage implementations.
//
// There are diferent Storage structs for diferent kinds of element types. The
// common contract is the following:
//
// * They have public `size` variables and `data` array members.
//
// * Their owner is responsible for enforcing the invariant that the first
// `size` elements in `data` are initialized, and the remaining elements are
// not initialized.
//
// * They implement default construction, construction with one or more
// elements, copy/move construction, copy/move assignment, and destruction;
// the owner must ensure that the invariant holds whenever these operations
// occur.
// Storage implementation for nontrivial element types.
template <typename T,
int fixed_capacity,
bool is_trivial = std::is_trivial<T>::value,
bool is_small = (sizeof(T) * fixed_capacity <= kSmallSize)>
struct Storage {
static_assert(!std::is_trivial<T>::value, "");
template <
typename... Ts,
typename std::enable_if_t<AllConvertible<T, Ts...>::value>* = nullptr>
explicit Storage(Ts&&... elements) : size(sizeof...(Ts)) {
InitializeElements(data, std::forward<Ts>(elements)...);
}
Storage(const Storage& other) {
CopyElements(other.data, other.size, data, &size);
}
Storage(Storage&& other) {
MoveElements(other.data, other.size, data, &size);
}
Storage& operator=(const Storage& other) {
if (this != &other) {
DestroyElements(data, size);
CopyElements(other.data, other.size, data, &size);
}
return *this;
}
Storage& operator=(Storage&& other) {
DestroyElements(data, size);
size = 0; // Needed in case of self assignment.
MoveElements(other.data, other.size, data, &size);
return *this;
}
~Storage() { DestroyElements(data, size); }
int size;
union {
// Since this array is in a union, we get to construct and destroy it
// manually.
T data[fixed_capacity]; // NOLINT(runtime/arrays)
};
};
// Storage implementation for trivial element types when the capacity is small
// enough that we can cheaply copy everything.
template <typename T, int fixed_capacity>
struct Storage<T, fixed_capacity, /*is_trivial=*/true, /*is_small=*/true> {
static_assert(std::is_trivial<T>::value, "");
static_assert(sizeof(T) * fixed_capacity <= kSmallSize, "");
template <
typename... Ts,
typename std::enable_if_t<AllConvertible<T, Ts...>::value>* = nullptr>
explicit Storage(Ts&&... elements) : size(sizeof...(Ts)) {
InitializeElements(data, std::forward<Ts>(elements)...);
}
Storage(const Storage&) = default;
Storage& operator=(const Storage&) = default;
~Storage() = default;
int size;
T data[fixed_capacity]; // NOLINT(runtime/arrays)
};
// Storage implementation for trivial element types when the capacity is large
// enough that we want to avoid copying uninitialized elements.
template <typename T, int fixed_capacity>
struct Storage<T, fixed_capacity, /*is_trivial=*/true, /*is_small=*/false> {
static_assert(std::is_trivial<T>::value, "");
static_assert(sizeof(T) * fixed_capacity > kSmallSize, "");
template <
typename... Ts,
typename std::enable_if_t<AllConvertible<T, Ts...>::value>* = nullptr>
explicit Storage(Ts&&... elements) : size(sizeof...(Ts)) {
InitializeElements(data, std::forward<Ts>(elements)...);
}
Storage(const Storage& other) : size(other.size) {
std::memcpy(data, other.data, other.size * sizeof(T));
}
Storage& operator=(const Storage& other) {
if (this != &other) {
size = other.size;
std::memcpy(data, other.data, other.size * sizeof(T));
}
return *this;
}
~Storage() = default;
int size;
union {
T data[fixed_capacity]; // NOLINT(runtime/arrays)
};
};
} // namespace bounded_inline_vector_impl
} // namespace webrtc
#endif // RTC_BASE_BOUNDED_INLINE_VECTOR_IMPL_H_

View File

@ -0,0 +1,118 @@
/*
* Copyright 2020 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/bounded_inline_vector.h"
#include <memory>
#include <string>
#include <utility>
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
using SmallTrivial = BoundedInlineVector<int, 2>;
using LargeTrivial = BoundedInlineVector<int, 200>;
using NonTrivial = BoundedInlineVector<std::string, 2>;
static_assert(std::is_trivially_copyable<SmallTrivial>::value, "");
static_assert(!std::is_trivially_copyable<LargeTrivial>::value, "");
static_assert(std::is_trivially_destructible<LargeTrivial>::value, "");
static_assert(!std::is_trivially_copyable<NonTrivial>::value, "");
static_assert(!std::is_trivially_destructible<NonTrivial>::value, "");
template <typename T>
class BoundedInlineVectorTestAllTypes : public ::testing::Test {};
using AllTypes =
::testing::Types<int, // Scalar type.
std::pair<int, float>, // Trivial nonprimitive type.
std::unique_ptr<int>, // Move-only type.
std::string>; // Nontrivial copyable type.
TYPED_TEST_SUITE(BoundedInlineVectorTestAllTypes, AllTypes);
template <typename T>
class BoundedInlineVectorTestCopyableTypes : public ::testing::Test {};
using CopyableTypes = ::testing::Types<int, std::pair<int, float>, std::string>;
TYPED_TEST_SUITE(BoundedInlineVectorTestCopyableTypes, CopyableTypes);
TYPED_TEST(BoundedInlineVectorTestAllTypes, ConstructEmpty) {
BoundedInlineVector<TypeParam, 3> x;
EXPECT_EQ(x.size(), 0);
EXPECT_EQ(x.begin(), x.end());
static_assert(x.capacity() == 3, "");
}
TYPED_TEST(BoundedInlineVectorTestAllTypes, ConstructNonempty) {
BoundedInlineVector<TypeParam, 3> x = {TypeParam(), TypeParam()};
EXPECT_EQ(x.size(), 2);
static_assert(x.capacity() == 3, "");
}
TYPED_TEST(BoundedInlineVectorTestCopyableTypes, CopyConstruct) {
BoundedInlineVector<TypeParam, 3> x = {TypeParam(), TypeParam()};
BoundedInlineVector<TypeParam, 2> y = x;
EXPECT_EQ(y.size(), 2);
static_assert(x.capacity() == 3, "");
static_assert(y.capacity() == 2, "");
}
TYPED_TEST(BoundedInlineVectorTestCopyableTypes, CopyAssign) {
BoundedInlineVector<TypeParam, 3> x = {TypeParam(), TypeParam()};
BoundedInlineVector<TypeParam, 2> y;
EXPECT_EQ(y.size(), 0);
y = x;
EXPECT_EQ(y.size(), 2);
}
TYPED_TEST(BoundedInlineVectorTestAllTypes, MoveConstruct) {
BoundedInlineVector<TypeParam, 3> x = {TypeParam(), TypeParam()};
BoundedInlineVector<TypeParam, 2> y = std::move(x);
EXPECT_EQ(y.size(), 2);
static_assert(x.capacity() == 3, "");
static_assert(y.capacity() == 2, "");
}
TYPED_TEST(BoundedInlineVectorTestAllTypes, MoveAssign) {
BoundedInlineVector<TypeParam, 3> x = {TypeParam(), TypeParam()};
BoundedInlineVector<TypeParam, 2> y;
EXPECT_EQ(y.size(), 0);
y = std::move(x);
EXPECT_EQ(y.size(), 2);
}
TEST(BoundedInlineVectorTestOneType, Iteration) {
BoundedInlineVector<std::string, 4> sv{"one", "two", "three", "four"};
std::string cat;
for (const auto& s : sv) {
cat += s;
}
EXPECT_EQ(cat, "onetwothreefour");
}
TEST(BoundedInlineVectorTestOneType, Indexing) {
BoundedInlineVector<double, 1> x = {3.14};
EXPECT_EQ(x[0], 3.14);
}
template <typename T, int capacity, typename... Ts>
BoundedInlineVector<T, capacity> Returns(Ts... values) {
return {std::forward<Ts>(values)...};
}
TYPED_TEST(BoundedInlineVectorTestAllTypes, Return) {
EXPECT_EQ((Returns<TypeParam, 3>().size()), 0);
EXPECT_EQ((Returns<TypeParam, 3>(TypeParam(), TypeParam()).size()), 2);
}
} // namespace
} // namespace webrtc