Add new prioritized packet queue.

This queue is a more strict round robing queue, unlike the class
named RoundRobinPacketQueue. That is, we don't have the same logic to
prioritize lower-bitrate streams.

The queue time mechanism is essentially directly copied from the
previous implementation however.

Bug: webrtc:11340
Change-Id: Ie38ba8ce27c985f5f1e907cec068d6a365089bcc
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/260562
Reviewed-by: Danil Chapovalov <danilchap@webrtc.org>
Commit-Queue: Erik Språng <sprang@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#36737}
This commit is contained in:
Erik Språng 2022-05-02 21:18:08 +02:00 committed by WebRTC LUCI CQ
parent 869c87a2b9
commit b73c058702
8 changed files with 632 additions and 10 deletions

View File

@ -23,6 +23,8 @@ rtc_library("pacing") {
"pacing_controller.h", "pacing_controller.h",
"packet_router.cc", "packet_router.cc",
"packet_router.h", "packet_router.h",
"prioritized_packet_queue.cc",
"prioritized_packet_queue.h",
"round_robin_packet_queue.cc", "round_robin_packet_queue.cc",
"round_robin_packet_queue.h", "round_robin_packet_queue.h",
"rtp_packet_pacer.h", "rtp_packet_pacer.h",
@ -93,6 +95,7 @@ if (rtc_include_tests) {
"paced_sender_unittest.cc", "paced_sender_unittest.cc",
"pacing_controller_unittest.cc", "pacing_controller_unittest.cc",
"packet_router_unittest.cc", "packet_router_unittest.cc",
"prioritized_packet_queue_unittest.cc",
"task_queue_paced_sender_unittest.cc", "task_queue_paced_sender_unittest.cc",
] ]
deps = [ deps = [

View File

@ -18,6 +18,7 @@
#include "absl/strings/match.h" #include "absl/strings/match.h"
#include "modules/pacing/bitrate_prober.h" #include "modules/pacing/bitrate_prober.h"
#include "modules/pacing/interval_budget.h" #include "modules/pacing/interval_budget.h"
#include "modules/pacing/prioritized_packet_queue.h"
#include "modules/pacing/round_robin_packet_queue.h" #include "modules/pacing/round_robin_packet_queue.h"
#include "rtc_base/checks.h" #include "rtc_base/checks.h"
#include "rtc_base/experiments/field_trial_parser.h" #include "rtc_base/experiments/field_trial_parser.h"
@ -55,6 +56,15 @@ TimeDelta GetDynamicPaddingTarget(const FieldTrialsView& field_trials) {
return padding_target.Get(); return padding_target.Get();
} }
std::unique_ptr<PacingController::PacketQueue> CreatePacketQueue(
const FieldTrialsView& field_trials,
Timestamp creation_time) {
if (field_trials.IsEnabled("WebRTC-Pacer-UsePrioritizedPacketQueue")) {
return std::make_unique<PrioritizedPacketQueue>(creation_time);
}
return std::make_unique<RoundRobinPacketQueue>(creation_time);
}
} // namespace } // namespace
const TimeDelta PacingController::kMaxExpectedQueueLength = const TimeDelta PacingController::kMaxExpectedQueueLength =
@ -98,8 +108,7 @@ PacingController::PacingController(Clock* clock,
last_process_time_(clock->CurrentTime()), last_process_time_(clock->CurrentTime()),
last_send_time_(last_process_time_), last_send_time_(last_process_time_),
seen_first_packet_(false), seen_first_packet_(false),
packet_queue_( packet_queue_(CreatePacketQueue(field_trials_, last_process_time_)),
std::make_unique<RoundRobinPacketQueue>(last_process_time_)),
congested_(false), congested_(false),
queue_time_limit_(kMaxExpectedQueueLength), queue_time_limit_(kMaxExpectedQueueLength),
account_for_audio_(false), account_for_audio_(false),
@ -237,7 +246,7 @@ TimeDelta PacingController::ExpectedQueueTime() const {
} }
size_t PacingController::QueueSizePackets() const { size_t PacingController::QueueSizePackets() const {
return packet_queue_->SizeInPackets(); return rtc::checked_cast<size_t>(packet_queue_->SizeInPackets());
} }
DataSize PacingController::QueueSizeData() const { DataSize PacingController::QueueSizeData() const {

View File

@ -71,7 +71,7 @@ class PacingController {
std::unique_ptr<RtpPacketToSend> packet) = 0; std::unique_ptr<RtpPacketToSend> packet) = 0;
virtual std::unique_ptr<RtpPacketToSend> Pop() = 0; virtual std::unique_ptr<RtpPacketToSend> Pop() = 0;
virtual size_t SizeInPackets() const = 0; virtual int SizeInPackets() const = 0;
bool Empty() const { return SizeInPackets() == 0; } bool Empty() const { return SizeInPackets() == 0; }
virtual DataSize SizeInPayloadBytes() const = 0; virtual DataSize SizeInPayloadBytes() const = 0;
@ -88,6 +88,7 @@ class PacingController {
// Average queue time for the packets currently in the queue. // Average queue time for the packets currently in the queue.
// The queuing time is calculated from Push() to the last UpdateQueueTime() // The queuing time is calculated from Push() to the last UpdateQueueTime()
// call - with any time spent in a paused state subtracted. // call - with any time spent in a paused state subtracted.
// Returns TimeDelta::Zero() for an empty queue.
virtual TimeDelta AverageQueueTime() const = 0; virtual TimeDelta AverageQueueTime() const = 0;
// Called during packet processing or when pause stats changes. Since the // Called during packet processing or when pause stats changes. Since the

View File

@ -0,0 +1,253 @@
/*
* Copyright (c) 2022 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/pacing/prioritized_packet_queue.h"
#include <utility>
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
constexpr int kAudioPrioLevel = 0;
int GetPriorityForType(RtpPacketMediaType type) {
// Lower number takes priority over higher.
switch (type) {
case RtpPacketMediaType::kAudio:
// Audio is always prioritized over other packet types.
return kAudioPrioLevel;
case RtpPacketMediaType::kRetransmission:
// Send retransmissions before new media.
return kAudioPrioLevel + 1;
case RtpPacketMediaType::kVideo:
case RtpPacketMediaType::kForwardErrorCorrection:
// Video has "normal" priority, in the old speak.
// Send redundancy concurrently to video. If it is delayed it might have a
// lower chance of being useful.
return kAudioPrioLevel + 2;
case RtpPacketMediaType::kPadding:
// Packets that are in themselves likely useless, only sent to keep the
// BWE high.
return kAudioPrioLevel + 3;
}
RTC_CHECK_NOTREACHED();
}
} // namespace
DataSize PrioritizedPacketQueue::QueuedPacket::PacketSize() const {
return DataSize::Bytes(packet->payload_size() + packet->padding_size());
}
PrioritizedPacketQueue::StreamQueue::StreamQueue(Timestamp creation_time)
: last_enqueue_time_(creation_time) {}
bool PrioritizedPacketQueue::StreamQueue::EnqueuePacket(QueuedPacket packet,
int priority_level) {
bool first_packet_at_level = packets_[priority_level].empty();
packets_[priority_level].push_back(std::move(packet));
return first_packet_at_level;
}
PrioritizedPacketQueue::QueuedPacket
PrioritizedPacketQueue::StreamQueue::DequePacket(int priority_level) {
RTC_DCHECK(!packets_[priority_level].empty());
QueuedPacket packet = std::move(packets_[priority_level].front());
packets_[priority_level].pop_front();
return packet;
}
bool PrioritizedPacketQueue::StreamQueue::HasPacketsAtPrio(
int priority_level) const {
return !packets_[priority_level].empty();
}
bool PrioritizedPacketQueue::StreamQueue::IsEmpty() const {
for (const std::deque<QueuedPacket>& queue : packets_) {
if (!queue.empty()) {
return false;
}
}
return true;
}
Timestamp PrioritizedPacketQueue::StreamQueue::LeadingAudioPacketEnqueueTime()
const {
RTC_DCHECK(!packets_[kAudioPrioLevel].empty());
return packets_[kAudioPrioLevel].begin()->enqueue_time;
}
Timestamp PrioritizedPacketQueue::StreamQueue::LastEnqueueTime() const {
return last_enqueue_time_;
}
PrioritizedPacketQueue::PrioritizedPacketQueue(Timestamp creation_time)
: queue_time_sum_(TimeDelta::Zero()),
pause_time_sum_(TimeDelta::Zero()),
size_packets_(0),
size_payload_(DataSize::Zero()),
last_update_time_(creation_time),
paused_(false),
last_culling_time_(creation_time),
top_active_prio_level_(-1) {}
void PrioritizedPacketQueue::Push(Timestamp enqueue_time,
std::unique_ptr<RtpPacketToSend> packet) {
StreamQueue* stream_queue;
auto [it, inserted] = streams_.emplace(packet->Ssrc(), nullptr);
if (inserted) {
it->second = std::make_unique<StreamQueue>(enqueue_time);
}
stream_queue = it->second.get();
auto enqueue_time_iterator =
enqueue_times_.insert(enqueue_times_.end(), enqueue_time);
int prio_level = GetPriorityForType(*packet->packet_type());
RTC_DCHECK_GE(prio_level, 0);
RTC_DCHECK_LT(prio_level, kNumPriorityLevels);
QueuedPacket queued_packed = {.packet = std::move(packet),
.enqueue_time = enqueue_time,
.enqueue_time_iterator = enqueue_time_iterator};
// In order to figure out how much time a packet has spent in the queue
// while not in a paused state, we subtract the total amount of time the
// queue has been paused so far, and when the packet is popped we subtract
// the total amount of time the queue has been paused at that moment. This
// way we subtract the total amount of time the packet has spent in the
// queue while in a paused state.
UpdateAverageQueueTime(enqueue_time);
queued_packed.enqueue_time -= pause_time_sum_;
++size_packets_;
size_payload_ += queued_packed.PacketSize();
if (stream_queue->EnqueuePacket(std::move(queued_packed), prio_level)) {
// Number packets at `prio_level` for this steam is now non-zero.
streams_by_prio_[prio_level].push_back(stream_queue);
}
if (top_active_prio_level_ < 0 || prio_level < top_active_prio_level_) {
top_active_prio_level_ = prio_level;
}
static constexpr TimeDelta kTimeout = TimeDelta::Millis(500);
if (enqueue_time - last_culling_time_ > kTimeout) {
for (auto it = streams_.begin(); it != streams_.end();) {
if (it->second->IsEmpty() &&
it->second->LastEnqueueTime() + kTimeout < enqueue_time) {
streams_.erase(it++);
} else {
++it;
}
}
last_culling_time_ = enqueue_time;
}
}
std::unique_ptr<RtpPacketToSend> PrioritizedPacketQueue::Pop() {
if (size_packets_ == 0) {
return nullptr;
}
RTC_DCHECK_GE(top_active_prio_level_, 0);
StreamQueue& stream_queue = *streams_by_prio_[top_active_prio_level_].front();
QueuedPacket packet = stream_queue.DequePacket(top_active_prio_level_);
--size_packets_;
size_payload_ -= packet.PacketSize();
// Calculate the total amount of time spent by this packet in the queue
// while in a non-paused state. Note that the `pause_time_sum_ms_` was
// subtracted from `packet.enqueue_time_ms` when the packet was pushed, and
// by subtracting it now we effectively remove the time spent in in the
// queue while in a paused state.
TimeDelta time_in_non_paused_state =
last_update_time_ - packet.enqueue_time - pause_time_sum_;
queue_time_sum_ -= time_in_non_paused_state;
RTC_DCHECK(size_packets_ > 0 || queue_time_sum_ == TimeDelta::Zero());
RTC_CHECK(packet.enqueue_time_iterator != enqueue_times_.end());
enqueue_times_.erase(packet.enqueue_time_iterator);
// Remove StreamQueue from head of fifo-queue for this prio level, and
// and add it to the end if it still has packets.
streams_by_prio_[top_active_prio_level_].pop_front();
if (stream_queue.HasPacketsAtPrio(top_active_prio_level_)) {
streams_by_prio_[top_active_prio_level_].push_back(&stream_queue);
} else if (streams_by_prio_[top_active_prio_level_].empty()) {
// No stream queues have packets at this prio level, find top priority
// that is not empty.
if (size_packets_ == 0) {
top_active_prio_level_ = -1;
} else {
for (int i = 0; i < kNumPriorityLevels; ++i) {
if (!streams_by_prio_[i].empty()) {
top_active_prio_level_ = i;
break;
}
}
}
}
return std::move(packet.packet);
}
int PrioritizedPacketQueue::SizeInPackets() const {
return size_packets_;
}
DataSize PrioritizedPacketQueue::SizeInPayloadBytes() const {
return size_payload_;
}
Timestamp PrioritizedPacketQueue::LeadingAudioPacketEnqueueTime() const {
if (streams_by_prio_[kAudioPrioLevel].empty()) {
return Timestamp::MinusInfinity();
}
return streams_by_prio_[kAudioPrioLevel]
.front()
->LeadingAudioPacketEnqueueTime();
}
Timestamp PrioritizedPacketQueue::OldestEnqueueTime() const {
return enqueue_times_.empty() ? Timestamp::MinusInfinity()
: enqueue_times_.front();
}
TimeDelta PrioritizedPacketQueue::AverageQueueTime() const {
if (size_packets_ == 0) {
return TimeDelta::Zero();
}
return queue_time_sum_ / size_packets_;
}
void PrioritizedPacketQueue::UpdateAverageQueueTime(Timestamp now) {
RTC_CHECK_GE(now, last_update_time_);
if (now == last_update_time_) {
return;
}
TimeDelta delta = now - last_update_time_;
if (paused_) {
pause_time_sum_ += delta;
} else {
queue_time_sum_ += delta * size_packets_;
}
last_update_time_ = now;
}
void PrioritizedPacketQueue::SetPauseState(bool paused, Timestamp now) {
UpdateAverageQueueTime(now);
paused_ = paused;
}
} // namespace webrtc

View File

@ -0,0 +1,124 @@
/*
* Copyright (c) 2022 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_PACING_PRIORITIZED_PACKET_QUEUE_H_
#define MODULES_PACING_PRIORITIZED_PACKET_QUEUE_H_
#include <stddef.h>
#include <deque>
#include <list>
#include <memory>
#include <unordered_map>
#include "api/units/data_size.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "modules/pacing/pacing_controller.h"
#include "modules/rtp_rtcp/source/rtp_packet_to_send.h"
namespace webrtc {
class PrioritizedPacketQueue : public PacingController::PacketQueue {
public:
explicit PrioritizedPacketQueue(Timestamp creation_time);
PrioritizedPacketQueue(const PrioritizedPacketQueue&) = delete;
PrioritizedPacketQueue& operator=(const PrioritizedPacketQueue&) = delete;
void Push(Timestamp enqueue_time,
std::unique_ptr<RtpPacketToSend> packet) override;
std::unique_ptr<RtpPacketToSend> Pop() override;
int SizeInPackets() const override;
DataSize SizeInPayloadBytes() const override;
Timestamp LeadingAudioPacketEnqueueTime() const override;
Timestamp OldestEnqueueTime() const override;
TimeDelta AverageQueueTime() const override;
void UpdateAverageQueueTime(Timestamp now) override;
void SetPauseState(bool paused, Timestamp now) override;
private:
static constexpr int kNumPriorityLevels = 4;
class QueuedPacket {
public:
QueuedPacket(QueuedPacket&&) = default;
QueuedPacket& operator=(QueuedPacket&&) = default;
QueuedPacket(const QueuedPacket&) = delete;
QueuedPacket& operator=(const QueuedPacket&) = delete;
DataSize PacketSize() const;
std::unique_ptr<RtpPacketToSend> packet;
Timestamp enqueue_time;
std::list<Timestamp>::iterator enqueue_time_iterator;
};
// Class containing packets for an RTP stream.
// For each priority level, packets are simply stored in a fifo queue.
class StreamQueue {
public:
explicit StreamQueue(Timestamp creation_time);
StreamQueue(StreamQueue&&) = default;
StreamQueue& operator=(StreamQueue&&) = default;
StreamQueue(const StreamQueue&) = delete;
StreamQueue& operator=(const StreamQueue&) = delete;
// Enqueue packet at the given priority level. Returns true if the packet
// count for that priority level went from zero to non-zero.
bool EnqueuePacket(QueuedPacket packet, int priority_level);
QueuedPacket DequePacket(int priority_level);
bool HasPacketsAtPrio(int priority_level) const;
bool IsEmpty() const;
Timestamp LeadingAudioPacketEnqueueTime() const;
Timestamp LastEnqueueTime() const;
private:
std::deque<QueuedPacket> packets_[kNumPriorityLevels];
Timestamp last_enqueue_time_;
};
// Cumulative sum, over all packets, of time spent in the queue.
TimeDelta queue_time_sum_;
// Cumulative sum of time the queue has spent in a paused state.
TimeDelta pause_time_sum_;
// Total number of packets stored in this queue.
int size_packets_;
// Sum of payload sizes for all packts stored in this queue.
DataSize size_payload_;
// The last time queue/pause time sums were updated.
Timestamp last_update_time_;
bool paused_;
// Last time `streams_` was culled for inactive streams.
Timestamp last_culling_time_;
// Map from SSRC to packet queues for the associated RTP stream.
std::unordered_map<uint32_t, std::unique_ptr<StreamQueue>> streams_;
// For each priority level, a queue of StreamQueues which have at least one
// packet pending for that prio level.
std::deque<StreamQueue*> streams_by_prio_[kNumPriorityLevels];
// The first index into `stream_by_prio_` that is non-empty.
int top_active_prio_level_;
// Ordered list of enqueue times. Additions are always increasing and added to
// the end. QueuedPacket instances have a iterators into this list for fast
// removal.
std::list<Timestamp> enqueue_times_;
};
} // namespace webrtc
#endif // MODULES_PACING_PRIORITIZED_PACKET_QUEUE_H_

View File

@ -0,0 +1,233 @@
/*
* Copyright (c) 2022 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/pacing/prioritized_packet_queue.h"
#include <utility>
#include "api/units/time_delta.h"
#include "modules/rtp_rtcp/source/rtp_packet_to_send.h"
#include "rtc_base/checks.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr uint32_t kDefaultSsrc = 123;
constexpr int kDefaultPayloadSize = 789;
std::unique_ptr<RtpPacketToSend> CreatePacket(RtpPacketMediaType type,
uint16_t sequence_number,
uint32_t ssrc = kDefaultSsrc) {
auto packet = std::make_unique<RtpPacketToSend>(/*extensions=*/nullptr);
packet->set_packet_type(type);
packet->SetSsrc(ssrc);
packet->SetSequenceNumber(sequence_number);
packet->SetPayloadSize(kDefaultPayloadSize);
return packet;
}
} // namespace
TEST(PrioritizedPacketQueue, ReturnsPacketsInPrioritizedOrder) {
Timestamp now = Timestamp::Zero();
PrioritizedPacketQueue queue(now);
// Add packets in low to high packet order.
queue.Push(now, CreatePacket(RtpPacketMediaType::kPadding, /*seq=*/1));
queue.Push(now, CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/2));
queue.Push(now, CreatePacket(RtpPacketMediaType::kForwardErrorCorrection,
/*seq=*/3));
queue.Push(now, CreatePacket(RtpPacketMediaType::kRetransmission, /*seq=*/4));
queue.Push(now, CreatePacket(RtpPacketMediaType::kAudio, /*seq=*/5));
// Packets should be returned in high to low order.
EXPECT_EQ(queue.Pop()->SequenceNumber(), 5);
EXPECT_EQ(queue.Pop()->SequenceNumber(), 4);
// Video and FEC prioritized equally - but video was enqueued first.
EXPECT_EQ(queue.Pop()->SequenceNumber(), 2);
EXPECT_EQ(queue.Pop()->SequenceNumber(), 3);
EXPECT_EQ(queue.Pop()->SequenceNumber(), 1);
}
TEST(PrioritizedPacketQueue, ReturnsEqualPrioPacketsInRoundRobinOrder) {
Timestamp now = Timestamp::Zero();
PrioritizedPacketQueue queue(now);
// Insert video packets (prioritized equally), simulating a simulcast-type use
// case.
queue.Push(now,
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/1, /*ssrc=*/100));
queue.Push(now,
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/2, /*ssrc=*/101));
queue.Push(now,
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/3, /*ssrc=*/101));
queue.Push(now,
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/4, /*ssrc=*/102));
queue.Push(now,
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/5, /*ssrc=*/102));
queue.Push(now,
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/6, /*ssrc=*/102));
queue.Push(now,
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/7, /*ssrc=*/102));
// First packet from each SSRC.
EXPECT_EQ(queue.Pop()->SequenceNumber(), 1);
EXPECT_EQ(queue.Pop()->SequenceNumber(), 2);
EXPECT_EQ(queue.Pop()->SequenceNumber(), 4);
// Second packets from streams that have packets left.
EXPECT_EQ(queue.Pop()->SequenceNumber(), 3);
EXPECT_EQ(queue.Pop()->SequenceNumber(), 5);
// Only packets from last stream remaining.
EXPECT_EQ(queue.Pop()->SequenceNumber(), 6);
EXPECT_EQ(queue.Pop()->SequenceNumber(), 7);
}
TEST(PrioritizedPacketQueue, ReportsSizeInPackets) {
PrioritizedPacketQueue queue(/*creation_time=*/Timestamp::Zero());
EXPECT_EQ(queue.SizeInPackets(), 0);
queue.Push(/*enqueue_time=*/Timestamp::Zero(),
CreatePacket(RtpPacketMediaType::kVideo,
/*seq_no=*/1));
EXPECT_EQ(queue.SizeInPackets(), 1);
queue.Pop();
EXPECT_EQ(queue.SizeInPackets(), 0);
}
TEST(PrioritizedPacketQueue, ReportsPayloadSize) {
PrioritizedPacketQueue queue(/*creation_time=*/Timestamp::Zero());
EXPECT_EQ(queue.SizeInPayloadBytes(), DataSize::Zero());
queue.Push(/*enqueue_time=*/Timestamp::Zero(),
CreatePacket(RtpPacketMediaType::kVideo,
/*seq_no=*/1));
EXPECT_EQ(queue.SizeInPayloadBytes(), DataSize::Bytes(kDefaultPayloadSize));
queue.Pop();
EXPECT_EQ(queue.SizeInPayloadBytes(), DataSize::Zero());
}
TEST(PrioritizedPacketQueue, ReportsPaddingSize) {
PrioritizedPacketQueue queue(/*creation_time=*/Timestamp::Zero());
EXPECT_EQ(queue.SizeInPayloadBytes(), DataSize::Zero());
static constexpr DataSize kPaddingSize = DataSize::Bytes(190);
auto packet = std::make_unique<RtpPacketToSend>(/*extensions=*/nullptr);
packet->set_packet_type(RtpPacketMediaType::kPadding);
packet->SetSsrc(kDefaultSsrc);
packet->SetSequenceNumber(/*seq=*/1);
packet->SetPadding(kPaddingSize.bytes());
queue.Push(/*enqueue_time=*/Timestamp::Zero(), std::move(packet));
EXPECT_EQ(queue.SizeInPayloadBytes(), kPaddingSize);
queue.Pop();
EXPECT_EQ(queue.SizeInPayloadBytes(), DataSize::Zero());
}
TEST(PrioritizedPacketQueue, ReportsOldestEnqueueTime) {
PrioritizedPacketQueue queue(/*creation_time=*/Timestamp::Zero());
EXPECT_EQ(queue.OldestEnqueueTime(), Timestamp::MinusInfinity());
// Add three packets, with the middle packet having higher prio.
queue.Push(Timestamp::Millis(10),
CreatePacket(RtpPacketMediaType::kPadding, /*seq=*/1));
queue.Push(Timestamp::Millis(20),
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/2));
queue.Push(Timestamp::Millis(30),
CreatePacket(RtpPacketMediaType::kPadding, /*seq=*/3));
EXPECT_EQ(queue.OldestEnqueueTime(), Timestamp::Millis(10));
queue.Pop(); // Pop packet with enqueue time 20.
EXPECT_EQ(queue.OldestEnqueueTime(), Timestamp::Millis(10));
queue.Pop(); // Pop packet with enqueue time 10.
EXPECT_EQ(queue.OldestEnqueueTime(), Timestamp::Millis(30));
queue.Pop(); // Pop packet with enqueue time 30, queue empty again.
EXPECT_EQ(queue.OldestEnqueueTime(), Timestamp::MinusInfinity());
}
TEST(PrioritizedPacketQueue, ReportsAverageQueueTime) {
PrioritizedPacketQueue queue(/*creation_time=*/Timestamp::Zero());
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Zero());
// Add three packets, with the middle packet having higher prio.
queue.Push(Timestamp::Millis(10),
CreatePacket(RtpPacketMediaType::kPadding, /*seq=*/1));
queue.Push(Timestamp::Millis(20),
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/2));
queue.Push(Timestamp::Millis(30),
CreatePacket(RtpPacketMediaType::kPadding, /*seq=*/3));
queue.UpdateAverageQueueTime(Timestamp::Millis(40));
// Packets have waited 30, 20, 10 ms -> average = 20ms.
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Millis(20));
queue.Pop(); // Pop packet with enqueue time 20.
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Millis(20));
queue.Pop(); // Pop packet with enqueue time 10.
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Millis(10));
queue.Pop(); // Pop packet with enqueue time 30, queue empty again.
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Zero());
}
TEST(PrioritizedPacketQueue, SubtractsPusedTimeFromAverageQueueTime) {
PrioritizedPacketQueue queue(/*creation_time=*/Timestamp::Zero());
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Zero());
// Add a packet and then enable paused state.
queue.Push(Timestamp::Millis(100),
CreatePacket(RtpPacketMediaType::kPadding, /*seq=*/1));
queue.SetPauseState(true, Timestamp::Millis(600));
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Millis(500));
// Enqueue a packet 500ms into the paused state. Queue time of
// original packet is still seen as 500ms and new one has 0ms giving
// an average of 250ms.
queue.Push(Timestamp::Millis(1100),
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/2));
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Millis(250));
// Unpause some time later, queue time still unchanged.
queue.SetPauseState(false, Timestamp::Millis(1600));
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Millis(250));
// Update queue time 500ms after pause state ended.
queue.UpdateAverageQueueTime(Timestamp::Millis(2100));
EXPECT_EQ(queue.AverageQueueTime(), TimeDelta::Millis(750));
}
TEST(PrioritizedPacketQueue, ReportsLeadingAudioEnqueueTime) {
PrioritizedPacketQueue queue(/*creation_time=*/Timestamp::Zero());
EXPECT_EQ(queue.LeadingAudioPacketEnqueueTime(), Timestamp::MinusInfinity());
queue.Push(Timestamp::Millis(10),
CreatePacket(RtpPacketMediaType::kVideo, /*seq=*/1));
EXPECT_EQ(queue.LeadingAudioPacketEnqueueTime(), Timestamp::MinusInfinity());
queue.Push(Timestamp::Millis(20),
CreatePacket(RtpPacketMediaType::kAudio, /*seq=*/2));
EXPECT_EQ(queue.LeadingAudioPacketEnqueueTime(), Timestamp::Millis(20));
queue.Pop(); // Pop audio packet.
EXPECT_EQ(queue.LeadingAudioPacketEnqueueTime(), Timestamp::MinusInfinity());
}
} // namespace webrtc

View File

@ -182,7 +182,7 @@ std::unique_ptr<RtpPacketToSend> RoundRobinPacketQueue::Pop() {
return rtp_packet; return rtp_packet;
} }
RTC_DCHECK_GT(size_packets_, 0u); RTC_DCHECK_GT(size_packets_, 0);
Stream* stream = GetHighestPriorityStream(); Stream* stream = GetHighestPriorityStream();
const QueuedPacket& queued_packet = stream->packet_queue.top(); const QueuedPacket& queued_packet = stream->packet_queue.top();
@ -231,7 +231,7 @@ std::unique_ptr<RtpPacketToSend> RoundRobinPacketQueue::Pop() {
return rtp_packet; return rtp_packet;
} }
size_t RoundRobinPacketQueue::SizeInPackets() const { int RoundRobinPacketQueue::SizeInPackets() const {
return size_packets_; return size_packets_;
} }
@ -280,7 +280,7 @@ void RoundRobinPacketQueue::UpdateAverageQueueTime(Timestamp now) {
if (paused_) { if (paused_) {
pause_time_sum_ += delta; pause_time_sum_ += delta;
} else { } else {
queue_time_sum_ += TimeDelta::Micros(delta.us() * size_packets_); queue_time_sum_ += delta * size_packets_;
} }
time_last_updated_ = now; time_last_updated_ = now;

View File

@ -28,7 +28,6 @@
#include "modules/pacing/pacing_controller.h" #include "modules/pacing/pacing_controller.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/rtp_rtcp/source/rtp_packet_to_send.h" #include "modules/rtp_rtcp/source/rtp_packet_to_send.h"
#include "system_wrappers/include/clock.h"
namespace webrtc { namespace webrtc {
@ -41,7 +40,7 @@ class RoundRobinPacketQueue : public PacingController::PacketQueue {
std::unique_ptr<RtpPacketToSend> packet) override; std::unique_ptr<RtpPacketToSend> packet) override;
std::unique_ptr<RtpPacketToSend> Pop() override; std::unique_ptr<RtpPacketToSend> Pop() override;
size_t SizeInPackets() const override; int SizeInPackets() const override;
DataSize SizeInPayloadBytes() const override; DataSize SizeInPayloadBytes() const override;
Timestamp LeadingAudioPacketEnqueueTime() const override; Timestamp LeadingAudioPacketEnqueueTime() const override;
Timestamp OldestEnqueueTime() const override; Timestamp OldestEnqueueTime() const override;
@ -142,7 +141,7 @@ class RoundRobinPacketQueue : public PacingController::PacketQueue {
int64_t enqueue_count_; int64_t enqueue_count_;
bool paused_; bool paused_;
size_t size_packets_; int size_packets_;
DataSize size_; DataSize size_;
DataSize max_size_; DataSize max_size_;
TimeDelta queue_time_sum_; TimeDelta queue_time_sum_;