Add parameterization for three multi channel AEC3 unit tests
Bug: webrtc:11295 Change-Id: I478aa02908c494cf9609db00021438a59a132b66 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/167202 Commit-Queue: Sam Zackrisson <saza@webrtc.org> Reviewed-by: Per Åhgren <peah@webrtc.org> Cr-Commit-Position: refs/heads/master@{#30370}
This commit is contained in:
parent
159c414ff8
commit
b18c4eb0a9
@ -51,12 +51,21 @@ std::string ProduceDebugText(size_t num_render_channels, size_t delay) {
|
||||
|
||||
} // namespace
|
||||
|
||||
class AdaptiveFirFilterOneTwoFourEightRenderChannels
|
||||
: public ::testing::Test,
|
||||
public ::testing::WithParamInterface<size_t> {};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(MultiChannel,
|
||||
AdaptiveFirFilterOneTwoFourEightRenderChannels,
|
||||
::testing::Values(1, 2, 4, 8));
|
||||
|
||||
#if defined(WEBRTC_HAS_NEON)
|
||||
// Verifies that the optimized methods for filter adaptation are similar to
|
||||
// their reference counterparts.
|
||||
TEST(AdaptiveFirFilter, FilterAdaptationNeonOptimizations) {
|
||||
TEST_P(AdaptiveFirFilterOneTwoFourEightRenderChannels,
|
||||
FilterAdaptationNeonOptimizations) {
|
||||
const size_t num_render_channels = GetParam();
|
||||
for (size_t num_partitions : {2, 5, 12, 30, 50}) {
|
||||
for (size_t num_render_channels : {1, 2, 4, 8}) {
|
||||
constexpr int kSampleRateHz = 48000;
|
||||
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
|
||||
|
||||
@ -127,19 +136,18 @@ TEST(AdaptiveFirFilter, FilterAdaptationNeonOptimizations) {
|
||||
EXPECT_NEAR(S_C.im[j], S_Neon.im[j], fabs(S_C.re[j] * 0.00001f));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Verifies that the optimized method for frequency response computation is
|
||||
// bitexact to the reference counterpart.
|
||||
TEST(AdaptiveFirFilter, ComputeFrequencyResponseNeonOptimization) {
|
||||
TEST_P(AdaptiveFirFilterOneTwoFourEightRenderChannels,
|
||||
ComputeFrequencyResponseNeonOptimization) {
|
||||
const size_t num_render_channels = GetParam();
|
||||
for (size_t num_partitions : {2, 5, 12, 30, 50}) {
|
||||
for (size_t num_render_channels : {1, 2, 4, 8}) {
|
||||
std::vector<std::vector<FftData>> H(
|
||||
num_partitions, std::vector<FftData>(num_render_channels));
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> H2(num_partitions);
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> H2_Neon(
|
||||
num_partitions);
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> H2_Neon(num_partitions);
|
||||
|
||||
for (size_t p = 0; p < num_partitions; ++p) {
|
||||
for (size_t ch = 0; ch < num_render_channels; ++ch) {
|
||||
@ -159,29 +167,29 @@ TEST(AdaptiveFirFilter, ComputeFrequencyResponseNeonOptimization) {
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(WEBRTC_ARCH_X86_FAMILY)
|
||||
// Verifies that the optimized methods for filter adaptation are bitexact to
|
||||
// their reference counterparts.
|
||||
TEST(AdaptiveFirFilter, FilterAdaptationSse2Optimizations) {
|
||||
TEST_P(AdaptiveFirFilterOneTwoFourEightRenderChannels,
|
||||
FilterAdaptationSse2Optimizations) {
|
||||
const size_t num_render_channels = GetParam();
|
||||
constexpr int kSampleRateHz = 48000;
|
||||
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
|
||||
|
||||
bool use_sse2 = (WebRtc_GetCPUInfo(kSSE2) != 0);
|
||||
if (use_sse2) {
|
||||
for (size_t num_partitions : {2, 5, 12, 30, 50}) {
|
||||
for (size_t num_render_channels : {1, 2, 4, 8}) {
|
||||
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
|
||||
RenderDelayBuffer::Create(EchoCanceller3Config(), kSampleRateHz,
|
||||
num_render_channels));
|
||||
Random random_generator(42U);
|
||||
std::vector<std::vector<std::vector<float>>> x(
|
||||
kNumBands,
|
||||
std::vector<std::vector<float>>(
|
||||
num_render_channels, std::vector<float>(kBlockSize, 0.f)));
|
||||
std::vector<std::vector<float>>(num_render_channels,
|
||||
std::vector<float>(kBlockSize, 0.f)));
|
||||
FftData S_C;
|
||||
FftData S_Sse2;
|
||||
FftData G;
|
||||
@ -236,16 +244,16 @@ TEST(AdaptiveFirFilter, FilterAdaptationSse2Optimizations) {
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Verifies that the optimized method for frequency response computation is
|
||||
// bitexact to the reference counterpart.
|
||||
TEST(AdaptiveFirFilter, ComputeFrequencyResponseSse2Optimization) {
|
||||
TEST_P(AdaptiveFirFilterOneTwoFourEightRenderChannels,
|
||||
ComputeFrequencyResponseSse2Optimization) {
|
||||
const size_t num_render_channels = GetParam();
|
||||
bool use_sse2 = (WebRtc_GetCPUInfo(kSSE2) != 0);
|
||||
if (use_sse2) {
|
||||
for (size_t num_partitions : {2, 5, 12, 30, 50}) {
|
||||
for (size_t num_render_channels : {1, 2, 4, 8}) {
|
||||
std::vector<std::vector<FftData>> H(
|
||||
num_partitions, std::vector<FftData>(num_render_channels));
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> H2(num_partitions);
|
||||
@ -271,20 +279,19 @@ TEST(AdaptiveFirFilter, ComputeFrequencyResponseSse2Optimization) {
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
|
||||
// Verifies that the check for non-null data dumper works.
|
||||
TEST(AdaptiveFirFilter, NullDataDumper) {
|
||||
TEST(AdaptiveFirFilterTest, NullDataDumper) {
|
||||
EXPECT_DEATH(AdaptiveFirFilter(9, 9, 250, 1, DetectOptimization(), nullptr),
|
||||
"");
|
||||
}
|
||||
|
||||
// Verifies that the check for non-null filter output works.
|
||||
TEST(AdaptiveFirFilter, NullFilterOutput) {
|
||||
TEST(AdaptiveFirFilterTest, NullFilterOutput) {
|
||||
ApmDataDumper data_dumper(42);
|
||||
AdaptiveFirFilter filter(9, 9, 250, 1, DetectOptimization(), &data_dumper);
|
||||
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
|
||||
@ -297,7 +304,7 @@ TEST(AdaptiveFirFilter, NullFilterOutput) {
|
||||
|
||||
// Verifies that the filter statistics can be accessed when filter statistics
|
||||
// are turned on.
|
||||
TEST(AdaptiveFirFilter, FilterStatisticsAccess) {
|
||||
TEST(AdaptiveFirFilterTest, FilterStatisticsAccess) {
|
||||
ApmDataDumper data_dumper(42);
|
||||
Aec3Optimization optimization = DetectOptimization();
|
||||
AdaptiveFirFilter filter(9, 9, 250, 1, optimization, &data_dumper);
|
||||
@ -314,7 +321,7 @@ TEST(AdaptiveFirFilter, FilterStatisticsAccess) {
|
||||
}
|
||||
|
||||
// Verifies that the filter size if correctly repported.
|
||||
TEST(AdaptiveFirFilter, FilterSize) {
|
||||
TEST(AdaptiveFirFilterTest, FilterSize) {
|
||||
ApmDataDumper data_dumper(42);
|
||||
for (size_t filter_size = 1; filter_size < 5; ++filter_size) {
|
||||
AdaptiveFirFilter filter(filter_size, filter_size, 250, 1,
|
||||
@ -323,23 +330,32 @@ TEST(AdaptiveFirFilter, FilterSize) {
|
||||
}
|
||||
}
|
||||
|
||||
class AdaptiveFirFilterMultiChannel
|
||||
: public ::testing::Test,
|
||||
public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(MultiChannel,
|
||||
AdaptiveFirFilterMultiChannel,
|
||||
::testing::Combine(::testing::Values(1, 4),
|
||||
::testing::Values(1, 8)));
|
||||
|
||||
// Verifies that the filter is being able to properly filter a signal and to
|
||||
// adapt its coefficients.
|
||||
TEST(AdaptiveFirFilter, FilterAndAdapt) {
|
||||
TEST_P(AdaptiveFirFilterMultiChannel, FilterAndAdapt) {
|
||||
const size_t num_render_channels = std::get<0>(GetParam());
|
||||
const size_t num_capture_channels = std::get<1>(GetParam());
|
||||
|
||||
constexpr int kSampleRateHz = 48000;
|
||||
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
|
||||
constexpr size_t kNumBlocksToProcessPerRenderChannel = 1000;
|
||||
|
||||
for (size_t num_capture_channels : {1, 4}) {
|
||||
for (size_t num_render_channels : {1, 8}) {
|
||||
ApmDataDumper data_dumper(42);
|
||||
EchoCanceller3Config config;
|
||||
|
||||
if (num_render_channels == 33) {
|
||||
config.filter.main = {13, 0.00005f, 0.0005f, 0.0001f, 2.f, 20075344.f};
|
||||
config.filter.shadow = {13, 0.1f, 20075344.f};
|
||||
config.filter.main_initial = {12, 0.005f, 0.5f,
|
||||
0.001f, 2.f, 20075344.f};
|
||||
config.filter.main_initial = {12, 0.005f, 0.5f, 0.001f, 2.f, 20075344.f};
|
||||
config.filter.shadow_initial = {12, 0.7f, 20075344.f};
|
||||
}
|
||||
|
||||
@ -348,8 +364,7 @@ TEST(AdaptiveFirFilter, FilterAndAdapt) {
|
||||
config.filter.config_change_duration_blocks, num_render_channels,
|
||||
DetectOptimization(), &data_dumper);
|
||||
std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>> H2(
|
||||
num_capture_channels,
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>>(
|
||||
num_capture_channels, std::vector<std::array<float, kFftLengthBy2Plus1>>(
|
||||
filter.max_filter_size_partitions(),
|
||||
std::array<float, kFftLengthBy2Plus1>()));
|
||||
std::vector<std::vector<float>> h(
|
||||
@ -359,15 +374,13 @@ TEST(AdaptiveFirFilter, FilterAndAdapt) {
|
||||
Aec3Fft fft;
|
||||
config.delay.default_delay = 1;
|
||||
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
|
||||
RenderDelayBuffer::Create(config, kSampleRateHz,
|
||||
num_render_channels));
|
||||
RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels));
|
||||
ShadowFilterUpdateGain gain(config.filter.shadow,
|
||||
config.filter.config_change_duration_blocks);
|
||||
Random random_generator(42U);
|
||||
std::vector<std::vector<std::vector<float>>> x(
|
||||
kNumBands,
|
||||
std::vector<std::vector<float>>(num_render_channels,
|
||||
std::vector<float>(kBlockSize, 0.f)));
|
||||
kNumBands, std::vector<std::vector<float>>(
|
||||
num_render_channels, std::vector<float>(kBlockSize, 0.f)));
|
||||
std::vector<float> n(kBlockSize, 0.f);
|
||||
std::vector<float> y(kBlockSize, 0.f);
|
||||
AecState aec_state(EchoCanceller3Config{}, num_capture_channels);
|
||||
@ -379,8 +392,7 @@ TEST(AdaptiveFirFilter, FilterAndAdapt) {
|
||||
FftData S;
|
||||
FftData G;
|
||||
FftData E;
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(
|
||||
num_capture_channels);
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels);
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> E2_main(
|
||||
num_capture_channels);
|
||||
std::array<float, kFftLengthBy2Plus1> E2_shadow;
|
||||
@ -452,9 +464,8 @@ TEST(AdaptiveFirFilter, FilterAndAdapt) {
|
||||
std::transform(y.begin(), y.end(), s_scratch.begin() + kFftLengthBy2,
|
||||
e.begin(),
|
||||
[&](float a, float b) { return a - b * kScale; });
|
||||
std::for_each(e.begin(), e.end(), [](float& a) {
|
||||
a = rtc::SafeClamp(a, -32768.f, 32767.f);
|
||||
});
|
||||
std::for_each(e.begin(), e.end(),
|
||||
[](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); });
|
||||
fft.ZeroPaddedFft(e, Aec3Fft::Window::kRectangular, &E);
|
||||
for (auto& o : output) {
|
||||
for (size_t k = 0; k < kBlockSize; ++k) {
|
||||
@ -478,8 +489,7 @@ TEST(AdaptiveFirFilter, FilterAndAdapt) {
|
||||
EXPECT_LT(1000 * std::inner_product(e.begin(), e.end(), e.begin(), 0.f),
|
||||
std::inner_product(y.begin(), y.end(), y.begin(), 0.f));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace aec3
|
||||
} // namespace webrtc
|
||||
|
||||
@ -18,13 +18,6 @@
|
||||
|
||||
namespace webrtc {
|
||||
namespace {
|
||||
std::string ProduceDebugText(size_t num_render_channels,
|
||||
size_t num_capture_channels) {
|
||||
rtc::StringBuilder ss;
|
||||
ss << "Render channels: " << num_render_channels;
|
||||
ss << ", Capture channels: " << num_capture_channels;
|
||||
return ss.Release();
|
||||
}
|
||||
|
||||
void RunNormalUsageTest(size_t num_render_channels,
|
||||
size_t num_capture_channels) {
|
||||
@ -232,14 +225,20 @@ void RunNormalUsageTest(size_t num_render_channels,
|
||||
|
||||
} // namespace
|
||||
|
||||
class AecStateMultiChannel
|
||||
: public ::testing::Test,
|
||||
public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(MultiChannel,
|
||||
AecStateMultiChannel,
|
||||
::testing::Combine(::testing::Values(1, 2, 8),
|
||||
::testing::Values(1, 2, 8)));
|
||||
|
||||
// Verify the general functionality of AecState
|
||||
TEST(AecState, NormalUsage) {
|
||||
for (size_t num_render_channels : {1, 2, 8}) {
|
||||
for (size_t num_capture_channels : {1, 2, 8}) {
|
||||
SCOPED_TRACE(ProduceDebugText(num_render_channels, num_capture_channels));
|
||||
TEST_P(AecStateMultiChannel, NormalUsage) {
|
||||
const size_t num_render_channels = std::get<0>(GetParam());
|
||||
const size_t num_capture_channels = std::get<1>(GetParam());
|
||||
RunNormalUsageTest(num_render_channels, num_capture_channels);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Verifies the delay for a converged filter is correctly identified.
|
||||
|
||||
@ -34,19 +34,26 @@ std::string ProduceDebugText(size_t delay, size_t down_sampling_factor) {
|
||||
|
||||
} // namespace
|
||||
|
||||
class EchoPathDelayEstimatorMultiChannel
|
||||
: public ::testing::Test,
|
||||
public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(MultiChannel,
|
||||
EchoPathDelayEstimatorMultiChannel,
|
||||
::testing::Combine(::testing::Values(1, 2, 3, 6, 8),
|
||||
::testing::Values(1, 2, 4)));
|
||||
|
||||
// Verifies that the basic API calls work.
|
||||
TEST(EchoPathDelayEstimator, BasicApiCalls) {
|
||||
TEST_P(EchoPathDelayEstimatorMultiChannel, BasicApiCalls) {
|
||||
const size_t num_render_channels = std::get<0>(GetParam());
|
||||
const size_t num_capture_channels = std::get<1>(GetParam());
|
||||
constexpr int kSampleRateHz = 48000;
|
||||
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
|
||||
for (size_t num_capture_channels : {1, 2, 4}) {
|
||||
for (size_t num_render_channels : {1, 2, 3, 6, 8}) {
|
||||
ApmDataDumper data_dumper(0);
|
||||
EchoCanceller3Config config;
|
||||
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
|
||||
RenderDelayBuffer::Create(config, kSampleRateHz,
|
||||
num_render_channels));
|
||||
EchoPathDelayEstimator estimator(&data_dumper, config,
|
||||
num_capture_channels);
|
||||
RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels));
|
||||
EchoPathDelayEstimator estimator(&data_dumper, config, num_capture_channels);
|
||||
std::vector<std::vector<std::vector<float>>> render(
|
||||
kNumBands, std::vector<std::vector<float>>(
|
||||
num_render_channels, std::vector<float>(kBlockSize)));
|
||||
@ -54,10 +61,8 @@ TEST(EchoPathDelayEstimator, BasicApiCalls) {
|
||||
std::vector<float>(kBlockSize));
|
||||
for (size_t k = 0; k < 100; ++k) {
|
||||
render_delay_buffer->Insert(render);
|
||||
estimator.EstimateDelay(
|
||||
render_delay_buffer->GetDownsampledRenderBuffer(), capture);
|
||||
}
|
||||
}
|
||||
estimator.EstimateDelay(render_delay_buffer->GetDownsampledRenderBuffer(),
|
||||
capture);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -26,7 +26,6 @@
|
||||
|
||||
namespace webrtc {
|
||||
namespace {
|
||||
|
||||
std::string ProduceDebugText(int sample_rate_hz) {
|
||||
rtc::StringBuilder ss;
|
||||
ss << "Sample rate: " << sample_rate_hz;
|
||||
@ -41,43 +40,48 @@ std::string ProduceDebugText(int sample_rate_hz, int delay) {
|
||||
|
||||
} // namespace
|
||||
|
||||
class EchoRemoverMultiChannel
|
||||
: public ::testing::Test,
|
||||
public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(MultiChannel,
|
||||
EchoRemoverMultiChannel,
|
||||
::testing::Combine(::testing::Values(1, 2, 8),
|
||||
::testing::Values(1, 2, 8)));
|
||||
|
||||
// Verifies the basic API call sequence
|
||||
TEST(EchoRemover, BasicApiCalls) {
|
||||
TEST_P(EchoRemoverMultiChannel, BasicApiCalls) {
|
||||
const size_t num_render_channels = std::get<0>(GetParam());
|
||||
const size_t num_capture_channels = std::get<1>(GetParam());
|
||||
absl::optional<DelayEstimate> delay_estimate;
|
||||
for (auto rate : {16000, 32000, 48000}) {
|
||||
for (size_t num_render_channels : {1, 2, 8}) {
|
||||
for (size_t num_capture_channels : {1, 2, 8}) {
|
||||
SCOPED_TRACE(ProduceDebugText(rate));
|
||||
std::unique_ptr<EchoRemover> remover(
|
||||
EchoRemover::Create(EchoCanceller3Config(), rate,
|
||||
num_render_channels, num_capture_channels));
|
||||
std::unique_ptr<RenderDelayBuffer> render_buffer(
|
||||
RenderDelayBuffer::Create(EchoCanceller3Config(), rate,
|
||||
num_render_channels));
|
||||
EchoRemover::Create(EchoCanceller3Config(), rate, num_render_channels,
|
||||
num_capture_channels));
|
||||
std::unique_ptr<RenderDelayBuffer> render_buffer(RenderDelayBuffer::Create(
|
||||
EchoCanceller3Config(), rate, num_render_channels));
|
||||
|
||||
std::vector<std::vector<std::vector<float>>> render(
|
||||
NumBandsForRate(rate),
|
||||
std::vector<std::vector<float>>(
|
||||
num_render_channels, std::vector<float>(kBlockSize, 0.f)));
|
||||
std::vector<std::vector<float>>(num_render_channels,
|
||||
std::vector<float>(kBlockSize, 0.f)));
|
||||
std::vector<std::vector<std::vector<float>>> capture(
|
||||
NumBandsForRate(rate),
|
||||
std::vector<std::vector<float>>(
|
||||
num_capture_channels, std::vector<float>(kBlockSize, 0.f)));
|
||||
std::vector<std::vector<float>>(num_capture_channels,
|
||||
std::vector<float>(kBlockSize, 0.f)));
|
||||
for (size_t k = 0; k < 100; ++k) {
|
||||
EchoPathVariability echo_path_variability(
|
||||
k % 3 == 0 ? true : false,
|
||||
k % 5 == 0
|
||||
? EchoPathVariability::DelayAdjustment::kNewDetectedDelay
|
||||
k % 5 == 0 ? EchoPathVariability::DelayAdjustment::kNewDetectedDelay
|
||||
: EchoPathVariability::DelayAdjustment::kNone,
|
||||
false);
|
||||
render_buffer->Insert(render);
|
||||
render_buffer->PrepareCaptureProcessing();
|
||||
|
||||
remover->ProcessCapture(
|
||||
echo_path_variability, k % 2 == 0 ? true : false, delay_estimate,
|
||||
render_buffer->GetRenderBuffer(), nullptr, &capture);
|
||||
}
|
||||
}
|
||||
remover->ProcessCapture(echo_path_variability, k % 2 == 0 ? true : false,
|
||||
delay_estimate, render_buffer->GetRenderBuffer(),
|
||||
nullptr, &capture);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -34,18 +34,25 @@ void VerifyErl(const std::array<float, kFftLengthBy2Plus1>& erl,
|
||||
|
||||
} // namespace
|
||||
|
||||
class ErlEstimatorMultiChannel
|
||||
: public ::testing::Test,
|
||||
public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(MultiChannel,
|
||||
ErlEstimatorMultiChannel,
|
||||
::testing::Combine(::testing::Values(1, 2, 8),
|
||||
::testing::Values(1, 2, 8)));
|
||||
|
||||
// Verifies that the correct ERL estimates are achieved.
|
||||
TEST(ErlEstimator, Estimates) {
|
||||
for (size_t num_render_channels : {1, 2, 8}) {
|
||||
for (size_t num_capture_channels : {1, 2, 8}) {
|
||||
TEST_P(ErlEstimatorMultiChannel, Estimates) {
|
||||
const size_t num_render_channels = std::get<0>(GetParam());
|
||||
const size_t num_capture_channels = std::get<1>(GetParam());
|
||||
SCOPED_TRACE(ProduceDebugText(num_render_channels, num_capture_channels));
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> X2(
|
||||
num_render_channels);
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> X2(num_render_channels);
|
||||
for (auto& X2_ch : X2) {
|
||||
X2_ch.fill(0.f);
|
||||
}
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(
|
||||
num_capture_channels);
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels);
|
||||
for (auto& Y2_ch : Y2) {
|
||||
Y2_ch.fill(0.f);
|
||||
}
|
||||
@ -93,8 +100,5 @@ TEST(ErlEstimator, Estimates) {
|
||||
estimator.Update(converged_filters, X2, Y2);
|
||||
}
|
||||
VerifyErl(estimator.Erl(), estimator.ErlTimeDomain(), 1000.f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
||||
|
||||
@ -16,12 +16,12 @@
|
||||
#include "modules/audio_processing/aec3/render_delay_buffer.h"
|
||||
#include "modules/audio_processing/aec3/spectrum_buffer.h"
|
||||
#include "rtc_base/random.h"
|
||||
#include "rtc_base/strings/string_builder.h"
|
||||
#include "test/gtest.h"
|
||||
|
||||
namespace webrtc {
|
||||
|
||||
namespace {
|
||||
|
||||
constexpr int kLowFrequencyLimit = kFftLengthBy2 / 2;
|
||||
constexpr float kTrueErle = 10.f;
|
||||
constexpr float kTrueErleOnsets = 1.0f;
|
||||
@ -129,37 +129,40 @@ void GetFilterFreq(
|
||||
|
||||
} // namespace
|
||||
|
||||
TEST(ErleEstimator, VerifyErleIncreaseAndHold) {
|
||||
class ErleEstimatorMultiChannel
|
||||
: public ::testing::Test,
|
||||
public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(MultiChannel,
|
||||
ErleEstimatorMultiChannel,
|
||||
::testing::Combine(::testing::Values(1, 2, 4, 8),
|
||||
::testing::Values(1, 2, 8)));
|
||||
|
||||
TEST_P(ErleEstimatorMultiChannel, VerifyErleIncreaseAndHold) {
|
||||
const size_t num_render_channels = std::get<0>(GetParam());
|
||||
const size_t num_capture_channels = std::get<1>(GetParam());
|
||||
constexpr int kSampleRateHz = 48000;
|
||||
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
|
||||
|
||||
for (size_t num_render_channels : {1, 2, 4, 8}) {
|
||||
for (size_t num_capture_channels : {1, 2, 4}) {
|
||||
std::array<float, kFftLengthBy2Plus1> X2;
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> E2(
|
||||
num_capture_channels);
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(
|
||||
num_capture_channels);
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> E2(num_capture_channels);
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels);
|
||||
std::vector<bool> converged_filters(num_capture_channels, true);
|
||||
|
||||
EchoCanceller3Config config;
|
||||
config.erle.onset_detection = true;
|
||||
|
||||
std::vector<std::vector<std::vector<float>>> x(
|
||||
kNumBands,
|
||||
std::vector<std::vector<float>>(num_render_channels,
|
||||
std::vector<float>(kBlockSize, 0.f)));
|
||||
kNumBands, std::vector<std::vector<float>>(
|
||||
num_render_channels, std::vector<float>(kBlockSize, 0.f)));
|
||||
std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
|
||||
filter_frequency_response(
|
||||
config.filter.main.length_blocks,
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>>(
|
||||
num_capture_channels));
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>>(num_capture_channels));
|
||||
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
|
||||
RenderDelayBuffer::Create(config, kSampleRateHz,
|
||||
num_render_channels));
|
||||
RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels));
|
||||
|
||||
GetFilterFreq(config.delay.delay_headroom_samples,
|
||||
filter_frequency_response);
|
||||
GetFilterFreq(config.delay.delay_headroom_samples, filter_frequency_response);
|
||||
|
||||
ErleEstimator estimator(0, config, num_capture_channels);
|
||||
|
||||
@ -167,14 +170,13 @@ TEST(ErleEstimator, VerifyErleIncreaseAndHold) {
|
||||
render_delay_buffer->Insert(x);
|
||||
render_delay_buffer->PrepareCaptureProcessing();
|
||||
// Verifies that the ERLE estimate is properly increased to higher values.
|
||||
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErle, &X2,
|
||||
E2, Y2);
|
||||
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErle, &X2, E2,
|
||||
Y2);
|
||||
for (size_t k = 0; k < 200; ++k) {
|
||||
render_delay_buffer->Insert(x);
|
||||
render_delay_buffer->PrepareCaptureProcessing();
|
||||
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
|
||||
filter_frequency_response, X2, Y2, E2,
|
||||
converged_filters);
|
||||
filter_frequency_response, X2, Y2, E2, converged_filters);
|
||||
}
|
||||
VerifyErle(estimator.Erle(), std::pow(2.f, estimator.FullbandErleLog2()),
|
||||
config.erle.max_l, config.erle.max_h);
|
||||
@ -186,44 +188,35 @@ TEST(ErleEstimator, VerifyErleIncreaseAndHold) {
|
||||
render_delay_buffer->Insert(x);
|
||||
render_delay_buffer->PrepareCaptureProcessing();
|
||||
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
|
||||
filter_frequency_response, X2, Y2, E2,
|
||||
converged_filters);
|
||||
filter_frequency_response, X2, Y2, E2, converged_filters);
|
||||
}
|
||||
VerifyErle(estimator.Erle(), std::pow(2.f, estimator.FullbandErleLog2()),
|
||||
config.erle.max_l, config.erle.max_h);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(ErleEstimator, VerifyErleTrackingOnOnsets) {
|
||||
TEST_P(ErleEstimatorMultiChannel, VerifyErleTrackingOnOnsets) {
|
||||
const size_t num_render_channels = std::get<0>(GetParam());
|
||||
const size_t num_capture_channels = std::get<1>(GetParam());
|
||||
constexpr int kSampleRateHz = 48000;
|
||||
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
|
||||
|
||||
for (size_t num_render_channels : {1, 2, 4, 8}) {
|
||||
for (size_t num_capture_channels : {1, 2, 4}) {
|
||||
std::array<float, kFftLengthBy2Plus1> X2;
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> E2(
|
||||
num_capture_channels);
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(
|
||||
num_capture_channels);
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> E2(num_capture_channels);
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels);
|
||||
std::vector<bool> converged_filters(num_capture_channels, true);
|
||||
EchoCanceller3Config config;
|
||||
config.erle.onset_detection = true;
|
||||
std::vector<std::vector<std::vector<float>>> x(
|
||||
kNumBands,
|
||||
std::vector<std::vector<float>>(num_render_channels,
|
||||
std::vector<float>(kBlockSize, 0.f)));
|
||||
kNumBands, std::vector<std::vector<float>>(
|
||||
num_render_channels, std::vector<float>(kBlockSize, 0.f)));
|
||||
std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
|
||||
filter_frequency_response(
|
||||
config.filter.main.length_blocks,
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>>(
|
||||
num_capture_channels));
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>>(num_capture_channels));
|
||||
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
|
||||
RenderDelayBuffer::Create(config, kSampleRateHz,
|
||||
num_render_channels));
|
||||
RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels));
|
||||
|
||||
GetFilterFreq(config.delay.delay_headroom_samples,
|
||||
filter_frequency_response);
|
||||
GetFilterFreq(config.delay.delay_headroom_samples, filter_frequency_response);
|
||||
|
||||
ErleEstimator estimator(/*startup_phase_length_blocks=*/0, config,
|
||||
num_capture_channels);
|
||||
@ -233,8 +226,8 @@ TEST(ErleEstimator, VerifyErleTrackingOnOnsets) {
|
||||
render_delay_buffer->PrepareCaptureProcessing();
|
||||
|
||||
for (size_t burst = 0; burst < 20; ++burst) {
|
||||
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(),
|
||||
kTrueErleOnsets, &X2, E2, Y2);
|
||||
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErleOnsets,
|
||||
&X2, E2, Y2);
|
||||
for (size_t k = 0; k < 10; ++k) {
|
||||
render_delay_buffer->Insert(x);
|
||||
render_delay_buffer->PrepareCaptureProcessing();
|
||||
@ -242,8 +235,8 @@ TEST(ErleEstimator, VerifyErleTrackingOnOnsets) {
|
||||
filter_frequency_response, X2, Y2, E2,
|
||||
converged_filters);
|
||||
}
|
||||
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErle, &X2,
|
||||
E2, Y2);
|
||||
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErle, &X2, E2,
|
||||
Y2);
|
||||
for (size_t k = 0; k < 200; ++k) {
|
||||
render_delay_buffer->Insert(x);
|
||||
render_delay_buffer->PrepareCaptureProcessing();
|
||||
@ -264,15 +257,12 @@ TEST(ErleEstimator, VerifyErleTrackingOnOnsets) {
|
||||
FormNearendFrame(&x, &X2, E2, Y2);
|
||||
for (size_t k = 0; k < 1000; k++) {
|
||||
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
|
||||
filter_frequency_response, X2, Y2, E2,
|
||||
converged_filters);
|
||||
filter_frequency_response, X2, Y2, E2, converged_filters);
|
||||
}
|
||||
// Verifies that during ne activity, Erle converges to the Erle for
|
||||
// onsets.
|
||||
VerifyErle(estimator.Erle(), std::pow(2.f, estimator.FullbandErleLog2()),
|
||||
config.erle.min, config.erle.min);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
||||
|
||||
@ -16,13 +16,23 @@
|
||||
#include "modules/audio_processing/aec3/render_delay_buffer.h"
|
||||
#include "modules/audio_processing/test/echo_canceller_test_tools.h"
|
||||
#include "rtc_base/random.h"
|
||||
#include "rtc_base/strings/string_builder.h"
|
||||
#include "test/gtest.h"
|
||||
|
||||
namespace webrtc {
|
||||
|
||||
TEST(ResidualEchoEstimator, BasicTest) {
|
||||
for (size_t num_render_channels : {1, 2, 4}) {
|
||||
for (size_t num_capture_channels : {1, 2, 4}) {
|
||||
class ResidualEchoEstimatorMultiChannel
|
||||
: public ::testing::Test,
|
||||
public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(MultiChannel,
|
||||
ResidualEchoEstimatorMultiChannel,
|
||||
::testing::Combine(::testing::Values(1, 2, 4),
|
||||
::testing::Values(1, 2, 4)));
|
||||
|
||||
TEST_P(ResidualEchoEstimatorMultiChannel, BasicTest) {
|
||||
const size_t num_render_channels = std::get<0>(GetParam());
|
||||
const size_t num_capture_channels = std::get<1>(GetParam());
|
||||
constexpr int kSampleRateHz = 48000;
|
||||
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
|
||||
|
||||
@ -30,21 +40,17 @@ TEST(ResidualEchoEstimator, BasicTest) {
|
||||
ResidualEchoEstimator estimator(config, num_render_channels);
|
||||
AecState aec_state(config, num_capture_channels);
|
||||
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
|
||||
RenderDelayBuffer::Create(config, kSampleRateHz,
|
||||
num_render_channels));
|
||||
RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels));
|
||||
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> E2_main(
|
||||
num_capture_channels);
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> S2_linear(
|
||||
num_capture_channels);
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(
|
||||
num_capture_channels);
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> R2(
|
||||
num_capture_channels);
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels);
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>> R2(num_capture_channels);
|
||||
std::vector<std::vector<std::vector<float>>> x(
|
||||
kNumBands,
|
||||
std::vector<std::vector<float>>(num_render_channels,
|
||||
std::vector<float>(kBlockSize, 0.f)));
|
||||
kNumBands, std::vector<std::vector<float>>(
|
||||
num_render_channels, std::vector<float>(kBlockSize, 0.f)));
|
||||
std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>> H2(
|
||||
num_capture_channels,
|
||||
std::vector<std::array<float, kFftLengthBy2Plus1>>(10));
|
||||
@ -63,8 +69,8 @@ TEST(ResidualEchoEstimator, BasicTest) {
|
||||
|
||||
std::vector<std::vector<float>> h(
|
||||
num_capture_channels,
|
||||
std::vector<float>(
|
||||
GetTimeDomainLength(config.filter.main.length_blocks), 0.f));
|
||||
std::vector<float>(GetTimeDomainLength(config.filter.main.length_blocks),
|
||||
0.f));
|
||||
|
||||
for (auto& subtractor_output : output) {
|
||||
subtractor_output.Reset();
|
||||
@ -96,8 +102,6 @@ TEST(ResidualEchoEstimator, BasicTest) {
|
||||
estimator.Estimate(aec_state, *render_delay_buffer->GetRenderBuffer(),
|
||||
S2_linear, Y2, R2);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
||||
|
||||
@ -27,7 +27,6 @@
|
||||
|
||||
namespace webrtc {
|
||||
namespace {
|
||||
|
||||
// Method for performing the simulations needed to test the main filter update
|
||||
// gain functionality.
|
||||
void RunFilterUpdateTest(int num_blocks_to_process,
|
||||
@ -153,12 +152,21 @@ TEST(ShadowFilterUpdateGain, NullDataOutputGain) {
|
||||
|
||||
#endif
|
||||
|
||||
class ShadowFilterUpdateGainOneTwoEightRenderChannels
|
||||
: public ::testing::Test,
|
||||
public ::testing::WithParamInterface<size_t> {};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(MultiChannel,
|
||||
ShadowFilterUpdateGainOneTwoEightRenderChannels,
|
||||
::testing::Values(1, 2, 8));
|
||||
|
||||
// Verifies that the gain formed causes the filter using it to converge.
|
||||
TEST(ShadowFilterUpdateGain, GainCausesFilterToConverge) {
|
||||
TEST_P(ShadowFilterUpdateGainOneTwoEightRenderChannels,
|
||||
GainCausesFilterToConverge) {
|
||||
const size_t num_render_channels = GetParam();
|
||||
std::vector<int> blocks_with_echo_path_changes;
|
||||
std::vector<int> blocks_with_saturation;
|
||||
|
||||
for (size_t num_render_channels : {1, 2, 8}) {
|
||||
for (size_t filter_length_blocks : {12, 20, 30}) {
|
||||
for (size_t delay_samples : {0, 64, 150, 200, 301}) {
|
||||
SCOPED_TRACE(ProduceDebugText(delay_samples, filter_length_blocks));
|
||||
@ -168,14 +176,13 @@ TEST(ShadowFilterUpdateGain, GainCausesFilterToConverge) {
|
||||
FftData G;
|
||||
|
||||
RunFilterUpdateTest(5000, delay_samples, num_render_channels,
|
||||
filter_length_blocks, blocks_with_saturation, &e,
|
||||
&y, &G);
|
||||
filter_length_blocks, blocks_with_saturation, &e, &y,
|
||||
&G);
|
||||
|
||||
// Verify that the main filter is able to perform well.
|
||||
// Use different criteria to take overmodelling into account.
|
||||
if (filter_length_blocks == 12) {
|
||||
EXPECT_LT(
|
||||
1000 * std::inner_product(e.begin(), e.end(), e.begin(), 0.f),
|
||||
EXPECT_LT(1000 * std::inner_product(e.begin(), e.end(), e.begin(), 0.f),
|
||||
std::inner_product(y.begin(), y.end(), y.begin(), 0.f));
|
||||
} else {
|
||||
EXPECT_LT(std::inner_product(e.begin(), e.end(), e.begin(), 0.f),
|
||||
@ -183,13 +190,51 @@ TEST(ShadowFilterUpdateGain, GainCausesFilterToConverge) {
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Verifies that the gain is zero when there is saturation.
|
||||
TEST_P(ShadowFilterUpdateGainOneTwoEightRenderChannels, SaturationBehavior) {
|
||||
const size_t num_render_channels = GetParam();
|
||||
std::vector<int> blocks_with_echo_path_changes;
|
||||
std::vector<int> blocks_with_saturation;
|
||||
for (int k = 99; k < 200; ++k) {
|
||||
blocks_with_saturation.push_back(k);
|
||||
}
|
||||
for (size_t filter_length_blocks : {12, 20, 30}) {
|
||||
SCOPED_TRACE(ProduceDebugText(filter_length_blocks));
|
||||
|
||||
std::array<float, kBlockSize> e;
|
||||
std::array<float, kBlockSize> y;
|
||||
FftData G_a;
|
||||
FftData G_a_ref;
|
||||
G_a_ref.re.fill(0.f);
|
||||
G_a_ref.im.fill(0.f);
|
||||
|
||||
RunFilterUpdateTest(100, 65, num_render_channels, filter_length_blocks,
|
||||
blocks_with_saturation, &e, &y, &G_a);
|
||||
|
||||
EXPECT_EQ(G_a_ref.re, G_a.re);
|
||||
EXPECT_EQ(G_a_ref.im, G_a.im);
|
||||
}
|
||||
}
|
||||
|
||||
class ShadowFilterUpdateGainOneTwoFourRenderChannels
|
||||
: public ::testing::Test,
|
||||
public ::testing::WithParamInterface<size_t> {};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
MultiChannel,
|
||||
ShadowFilterUpdateGainOneTwoFourRenderChannels,
|
||||
::testing::Values(1, 2, 4),
|
||||
[](const ::testing::TestParamInfo<
|
||||
ShadowFilterUpdateGainOneTwoFourRenderChannels::ParamType>& info) {
|
||||
return (rtc::StringBuilder() << "Render" << info.param).str();
|
||||
});
|
||||
|
||||
// Verifies that the magnitude of the gain on average decreases for a
|
||||
// persistently exciting signal.
|
||||
TEST(ShadowFilterUpdateGain, DecreasingGain) {
|
||||
for (size_t num_render_channels : {1, 2, 4}) {
|
||||
TEST_P(ShadowFilterUpdateGainOneTwoFourRenderChannels, DecreasingGain) {
|
||||
const size_t num_render_channels = GetParam();
|
||||
for (size_t filter_length_blocks : {12, 20, 30}) {
|
||||
SCOPED_TRACE(ProduceDebugText(filter_length_blocks));
|
||||
std::vector<int> blocks_with_echo_path_changes;
|
||||
@ -221,34 +266,5 @@ TEST(ShadowFilterUpdateGain, DecreasingGain) {
|
||||
EXPECT_GT(std::accumulate(G_b_power.begin(), G_b_power.end(), 0.),
|
||||
std::accumulate(G_c_power.begin(), G_c_power.end(), 0.));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Verifies that the gain is zero when there is saturation.
|
||||
TEST(ShadowFilterUpdateGain, SaturationBehavior) {
|
||||
std::vector<int> blocks_with_echo_path_changes;
|
||||
std::vector<int> blocks_with_saturation;
|
||||
for (int k = 99; k < 200; ++k) {
|
||||
blocks_with_saturation.push_back(k);
|
||||
}
|
||||
for (size_t num_render_channels : {1, 2, 8}) {
|
||||
for (size_t filter_length_blocks : {12, 20, 30}) {
|
||||
SCOPED_TRACE(ProduceDebugText(filter_length_blocks));
|
||||
|
||||
std::array<float, kBlockSize> e;
|
||||
std::array<float, kBlockSize> y;
|
||||
FftData G_a;
|
||||
FftData G_a_ref;
|
||||
G_a_ref.re.fill(0.f);
|
||||
G_a_ref.im.fill(0.f);
|
||||
|
||||
RunFilterUpdateTest(100, 65, num_render_channels, filter_length_blocks,
|
||||
blocks_with_saturation, &e, &y, &G_a);
|
||||
|
||||
EXPECT_EQ(G_a_ref.re, G_a.re);
|
||||
EXPECT_EQ(G_a_ref.im, G_a.im);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
||||
|
||||
@ -138,13 +138,21 @@ void TestInputs::UpdateCurrentPowerSpectra() {
|
||||
|
||||
} // namespace
|
||||
|
||||
TEST(SignalDependentErleEstimator, SweepSettings) {
|
||||
for (size_t num_render_channels : {1, 2, 4}) {
|
||||
for (size_t num_capture_channels : {1, 2, 4}) {
|
||||
class SignalDependentErleEstimatorMultiChannel
|
||||
: public ::testing::Test,
|
||||
public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(MultiChannel,
|
||||
SignalDependentErleEstimatorMultiChannel,
|
||||
::testing::Combine(::testing::Values(1, 2, 4),
|
||||
::testing::Values(1, 2, 4)));
|
||||
|
||||
TEST_P(SignalDependentErleEstimatorMultiChannel, SweepSettings) {
|
||||
const size_t num_render_channels = std::get<0>(GetParam());
|
||||
const size_t num_capture_channels = std::get<1>(GetParam());
|
||||
EchoCanceller3Config cfg;
|
||||
size_t max_length_blocks = 50;
|
||||
for (size_t blocks = 1; blocks < max_length_blocks;
|
||||
blocks = blocks + 10) {
|
||||
for (size_t blocks = 1; blocks < max_length_blocks; blocks = blocks + 10) {
|
||||
for (size_t delay_headroom = 0; delay_headroom < 5; ++delay_headroom) {
|
||||
for (size_t num_sections = 2; num_sections < max_length_blocks;
|
||||
++num_sections) {
|
||||
@ -163,11 +171,9 @@ TEST(SignalDependentErleEstimator, SweepSettings) {
|
||||
TestInputs inputs(cfg, num_render_channels, num_capture_channels);
|
||||
for (size_t n = 0; n < 10; ++n) {
|
||||
inputs.Update();
|
||||
s.Update(inputs.GetRenderBuffer(), inputs.GetH2(),
|
||||
inputs.GetX2(), inputs.GetY2(), inputs.GetE2(),
|
||||
average_erle, inputs.GetConvergedFilters());
|
||||
}
|
||||
}
|
||||
s.Update(inputs.GetRenderBuffer(), inputs.GetH2(), inputs.GetX2(),
|
||||
inputs.GetY2(), inputs.GetE2(), average_erle,
|
||||
inputs.GetConvergedFilters());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -175,9 +181,9 @@ TEST(SignalDependentErleEstimator, SweepSettings) {
|
||||
}
|
||||
}
|
||||
|
||||
TEST(SignalDependentErleEstimator, LongerRun) {
|
||||
for (size_t num_render_channels : {1, 2, 4}) {
|
||||
for (size_t num_capture_channels : {1, 2, 4}) {
|
||||
TEST_P(SignalDependentErleEstimatorMultiChannel, LongerRun) {
|
||||
const size_t num_render_channels = std::get<0>(GetParam());
|
||||
const size_t num_capture_channels = std::get<1>(GetParam());
|
||||
EchoCanceller3Config cfg;
|
||||
cfg.filter.main.length_blocks = 2;
|
||||
cfg.filter.main_initial.length_blocks = 1;
|
||||
@ -198,8 +204,6 @@ TEST(SignalDependentErleEstimator, LongerRun) {
|
||||
inputs.GetY2(), inputs.GetE2(), average_erle,
|
||||
inputs.GetConvergedFilters());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
||||
|
||||
@ -231,33 +231,6 @@ TEST(Subtractor, Convergence) {
|
||||
}
|
||||
}
|
||||
|
||||
// Verifies that the subtractor is able to converge on correlated data.
|
||||
TEST(Subtractor, ConvergenceMultiChannel) {
|
||||
#if defined(NDEBUG)
|
||||
const size_t kNumRenderChannelsToTest[] = {1, 2, 8};
|
||||
const size_t kNumCaptureChannelsToTest[] = {1, 2, 4};
|
||||
#else
|
||||
const size_t kNumRenderChannelsToTest[] = {1, 2};
|
||||
const size_t kNumCaptureChannelsToTest[] = {1, 2};
|
||||
#endif
|
||||
|
||||
std::vector<int> blocks_with_echo_path_changes;
|
||||
for (size_t num_render_channels : kNumRenderChannelsToTest) {
|
||||
for (size_t num_capture_channels : kNumCaptureChannelsToTest) {
|
||||
SCOPED_TRACE(
|
||||
ProduceDebugText(num_render_channels, num_render_channels, 64, 20));
|
||||
size_t num_blocks_to_process = 2500 * num_render_channels;
|
||||
std::vector<float> echo_to_nearend_powers = RunSubtractorTest(
|
||||
num_render_channels, num_capture_channels, num_blocks_to_process, 64,
|
||||
20, 20, false, blocks_with_echo_path_changes);
|
||||
|
||||
for (float echo_to_nearend_power : echo_to_nearend_powers) {
|
||||
EXPECT_GT(0.1f, echo_to_nearend_power);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Verifies that the subtractor is able to handle the case when the main filter
|
||||
// is longer than the shadow filter.
|
||||
TEST(Subtractor, MainFilterLongerThanShadowFilter) {
|
||||
@ -297,23 +270,68 @@ TEST(Subtractor, NonConvergenceOnUncorrelatedSignals) {
|
||||
}
|
||||
}
|
||||
|
||||
// Verifies that the subtractor does not converge on uncorrelated signals.
|
||||
TEST(Subtractor, NonConvergenceOnUncorrelatedSignalsMultiChannel) {
|
||||
class SubtractorMultiChannelUpToEightRender
|
||||
: public ::testing::Test,
|
||||
public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};
|
||||
|
||||
#if defined(NDEBUG)
|
||||
INSTANTIATE_TEST_SUITE_P(NonDebugMultiChannel,
|
||||
SubtractorMultiChannelUpToEightRender,
|
||||
::testing::Combine(::testing::Values(1, 2, 8),
|
||||
::testing::Values(1, 2, 4)));
|
||||
#else
|
||||
INSTANTIATE_TEST_SUITE_P(DebugMultiChannel,
|
||||
SubtractorMultiChannelUpToEightRender,
|
||||
::testing::Combine(::testing::Values(1, 2),
|
||||
::testing::Values(1, 2)));
|
||||
#endif
|
||||
|
||||
// Verifies that the subtractor is able to converge on correlated data.
|
||||
TEST_P(SubtractorMultiChannelUpToEightRender, Convergence) {
|
||||
const size_t num_render_channels = std::get<0>(GetParam());
|
||||
const size_t num_capture_channels = std::get<1>(GetParam());
|
||||
|
||||
std::vector<int> blocks_with_echo_path_changes;
|
||||
size_t num_blocks_to_process = 2500 * num_render_channels;
|
||||
std::vector<float> echo_to_nearend_powers = RunSubtractorTest(
|
||||
num_render_channels, num_capture_channels, num_blocks_to_process, 64, 20,
|
||||
20, false, blocks_with_echo_path_changes);
|
||||
|
||||
for (float echo_to_nearend_power : echo_to_nearend_powers) {
|
||||
EXPECT_GT(0.1f, echo_to_nearend_power);
|
||||
}
|
||||
}
|
||||
|
||||
class SubtractorMultiChannelUpToFourRender
|
||||
: public ::testing::Test,
|
||||
public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};
|
||||
|
||||
#if defined(NDEBUG)
|
||||
INSTANTIATE_TEST_SUITE_P(NonDebugMultiChannel,
|
||||
SubtractorMultiChannelUpToFourRender,
|
||||
::testing::Combine(::testing::Values(1, 2, 4),
|
||||
::testing::Values(1, 2, 4)));
|
||||
#else
|
||||
INSTANTIATE_TEST_SUITE_P(DebugMultiChannel,
|
||||
SubtractorMultiChannelUpToFourRender,
|
||||
::testing::Combine(::testing::Values(1, 2),
|
||||
::testing::Values(1, 2)));
|
||||
#endif
|
||||
|
||||
// Verifies that the subtractor does not converge on uncorrelated signals.
|
||||
TEST_P(SubtractorMultiChannelUpToFourRender,
|
||||
NonConvergenceOnUncorrelatedSignals) {
|
||||
const size_t num_render_channels = std::get<0>(GetParam());
|
||||
const size_t num_capture_channels = std::get<1>(GetParam());
|
||||
|
||||
std::vector<int> blocks_with_echo_path_changes;
|
||||
for (size_t num_render_channels : {1, 2, 4}) {
|
||||
for (size_t num_capture_channels : {1, 2, 4}) {
|
||||
SCOPED_TRACE(
|
||||
ProduceDebugText(num_render_channels, num_render_channels, 64, 20));
|
||||
size_t num_blocks_to_process = 5000 * num_render_channels;
|
||||
std::vector<float> echo_to_nearend_powers = RunSubtractorTest(
|
||||
num_render_channels, num_capture_channels, num_blocks_to_process, 64,
|
||||
20, 20, true, blocks_with_echo_path_changes);
|
||||
num_render_channels, num_capture_channels, num_blocks_to_process, 64, 20,
|
||||
20, true, blocks_with_echo_path_changes);
|
||||
for (float echo_to_nearend_power : echo_to_nearend_powers) {
|
||||
EXPECT_LT(.8f, echo_to_nearend_power);
|
||||
EXPECT_NEAR(1.f, echo_to_nearend_power, 0.25f);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace webrtc
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user