Adds monitor interval class for PCC.

The PCC congestion control algorithm divides time into consecutive
intervals called monitor intervals. This CL adds a class that is used by
PCC to measure the performance of sending at a certain rate during one
monitor interval.

Bug: webrtc:9434
Change-Id: Ia0447e224067d4ca807bcc6fd8083f9083385b91
Reviewed-on: https://webrtc-review.googlesource.com/87140
Commit-Queue: Anastasia Koloskova <koloskova@webrtc.org>
Reviewed-by: Sebastian Jansson <srte@webrtc.org>
Reviewed-by: Björn Terelius <terelius@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#24368}
This commit is contained in:
Anastasia Koloskova 2018-08-21 18:53:51 +02:00 committed by Commit Bot
parent 18a86bfcc1
commit 9171e78ccd
4 changed files with 401 additions and 0 deletions

View File

@ -8,6 +8,17 @@
import("../../../webrtc.gni")
rtc_static_library("monitor_interval") {
sources = [
"monitor_interval.cc",
"monitor_interval.h",
]
deps = [
"../../../api/transport:network_control",
"../../../rtc_base:rtc_base_approved",
]
}
rtc_static_library("rtt_tracker") {
sources = [
"rtt_tracker.cc",
@ -23,9 +34,11 @@ if (rtc_include_tests) {
rtc_source_set("pcc_unittests") {
testonly = true
sources = [
"monitor_interval_unittest.cc",
"rtt_tracker_unittest.cc",
]
deps = [
":monitor_interval",
":rtt_tracker",
"../../../api/transport:network_control_test",
"../../../api/units:data_rate",

View File

@ -0,0 +1,134 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/congestion_controller/pcc/monitor_interval.h"
#include "rtc_base/logging.h"
namespace webrtc {
namespace pcc {
PccMonitorInterval::PccMonitorInterval(DataRate target_sending_rate,
Timestamp start_time,
TimeDelta duration)
: target_sending_rate_(target_sending_rate),
start_time_(start_time),
interval_duration_(duration),
received_packets_size_(DataSize::Zero()),
feedback_collection_done_(false) {}
PccMonitorInterval::~PccMonitorInterval() = default;
PccMonitorInterval::PccMonitorInterval(const PccMonitorInterval& other) =
default;
void PccMonitorInterval::OnPacketsFeedback(
const std::vector<PacketResult>& packets_results) {
for (const PacketResult& packet_result : packets_results) {
if (!packet_result.sent_packet.has_value() ||
packet_result.sent_packet->send_time <= start_time_) {
continue;
}
// Here we assume that if some packets are reordered with packets sent
// after the end of the monitor interval, then they are lost. (Otherwise
// it is not clear how long should we wait for packets feedback to arrive).
if (packet_result.sent_packet->send_time >
start_time_ + interval_duration_) {
feedback_collection_done_ = true;
return;
}
if (packet_result.receive_time.IsInfinite()) {
lost_packets_sent_time_.push_back(packet_result.sent_packet->send_time);
} else {
received_packets_.push_back(
{packet_result.receive_time - packet_result.sent_packet->send_time,
packet_result.sent_packet->send_time});
received_packets_size_ += packet_result.sent_packet->size;
}
}
}
// For the formula used in computations see formula for "slope" in the second
// method:
// https://www.johndcook.com/blog/2008/10/20/comparing-two-ways-to-fit-a-line-to-data/
double PccMonitorInterval::ComputeDelayGradient(
double delay_gradient_threshold) const {
// Early return to prevent division by 0 in case all packets are sent at the
// same time.
if (received_packets_.empty() || received_packets_.front().sent_time ==
received_packets_.back().sent_time) {
return 0;
}
double sum_times = 0;
double sum_delays = 0;
for (const ReceivedPacket& packet : received_packets_) {
double time_delta_us =
(packet.sent_time - received_packets_[0].sent_time).us();
double delay = packet.delay.us();
sum_times += time_delta_us;
sum_delays += delay;
}
double sum_squared_scaled_time_deltas = 0;
double sum_scaled_time_delta_dot_delay = 0;
for (const ReceivedPacket& packet : received_packets_) {
double time_delta_us =
(packet.sent_time - received_packets_[0].sent_time).us();
double delay = packet.delay.us();
double scaled_time_delta_us =
time_delta_us - sum_times / received_packets_.size();
sum_squared_scaled_time_deltas +=
scaled_time_delta_us * scaled_time_delta_us;
sum_scaled_time_delta_dot_delay += scaled_time_delta_us * delay;
}
double rtt_gradient =
sum_scaled_time_delta_dot_delay / sum_squared_scaled_time_deltas;
if (std::abs(rtt_gradient) < delay_gradient_threshold)
rtt_gradient = 0;
return rtt_gradient;
}
bool PccMonitorInterval::IsFeedbackCollectionDone() const {
return feedback_collection_done_;
}
Timestamp PccMonitorInterval::GetEndTime() const {
return start_time_ + interval_duration_;
}
double PccMonitorInterval::GetLossRate() const {
size_t packets_lost = lost_packets_sent_time_.size();
size_t packets_received = received_packets_.size();
if (packets_lost == 0)
return 0;
return static_cast<double>(packets_lost) / (packets_lost + packets_received);
}
DataRate PccMonitorInterval::GetTargetSendingRate() const {
return target_sending_rate_;
}
DataRate PccMonitorInterval::GetTransmittedPacketsRate() const {
if (received_packets_.empty()) {
return target_sending_rate_;
}
Timestamp receive_time_of_first_packet =
received_packets_.front().sent_time + received_packets_.front().delay;
Timestamp receive_time_of_last_packet =
received_packets_.back().sent_time + received_packets_.back().delay;
if (receive_time_of_first_packet == receive_time_of_last_packet) {
RTC_LOG(LS_WARNING)
<< "All packets in monitor interval were received at the same time.";
return target_sending_rate_;
}
return received_packets_size_ /
(receive_time_of_last_packet - receive_time_of_first_packet);
}
} // namespace pcc
} // namespace webrtc

View File

@ -0,0 +1,68 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_CONGESTION_CONTROLLER_PCC_MONITOR_INTERVAL_H_
#define MODULES_CONGESTION_CONTROLLER_PCC_MONITOR_INTERVAL_H_
#include <vector>
#include "api/transport/network_control.h"
#include "api/transport/network_types.h"
namespace webrtc {
namespace pcc {
// PCC divides time into consecutive monitor intervals which are used to test
// consequences for performance of sending at a certain rate.
class PccMonitorInterval {
public:
PccMonitorInterval(DataRate target_sending_rate,
Timestamp start_time,
TimeDelta duration);
~PccMonitorInterval();
PccMonitorInterval(const PccMonitorInterval& other);
void OnPacketsFeedback(const std::vector<PacketResult>& packets_results);
// Returns true if got complete information about packets.
// Notice, this only happens when received feedback about the first packet
// which were sent after the end of the monitor interval. If such event
// doesn't occur, we don't mind anyway and stay in the same state.
bool IsFeedbackCollectionDone() const;
Timestamp GetEndTime() const;
double GetLossRate() const;
// Estimates the gradient using linear regression on the 2-dimensional
// dataset (sampled packets delay, time of sampling).
double ComputeDelayGradient(double delay_gradient_threshold) const;
DataRate GetTargetSendingRate() const;
// How fast receiving side gets packets.
DataRate GetTransmittedPacketsRate() const;
private:
struct ReceivedPacket {
TimeDelta delay;
Timestamp sent_time;
};
// Target bitrate used to generate and pace the outgoing packets.
// Actually sent bitrate might not match the target exactly.
DataRate target_sending_rate_;
// Start time is not included into interval while end time is included.
Timestamp start_time_;
TimeDelta interval_duration_;
// Vectors below updates while receiving feedback.
std::vector<ReceivedPacket> received_packets_;
std::vector<Timestamp> lost_packets_sent_time_;
DataSize received_packets_size_;
bool feedback_collection_done_;
};
} // namespace pcc
} // namespace webrtc
#endif // MODULES_CONGESTION_CONTROLLER_PCC_MONITOR_INTERVAL_H_

View File

@ -0,0 +1,186 @@
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/congestion_controller/pcc/monitor_interval.h"
#include "test/gtest.h"
namespace webrtc {
namespace pcc {
namespace test {
namespace {
const DataRate kTargetSendingRate = DataRate::kbps(300);
const Timestamp kStartTime = Timestamp::us(0);
const TimeDelta kPacketsDelta = TimeDelta::ms(1);
const TimeDelta kIntervalDuration = TimeDelta::ms(100);
const TimeDelta kDefaultDelay = TimeDelta::ms(100);
const DataSize kDefaultPacketSize = DataSize::bytes(100);
constexpr double kDelayGradientThreshold = 0.01;
std::vector<PacketResult> CreatePacketResults(
const std::vector<Timestamp>& packets_send_times,
const std::vector<Timestamp>& packets_received_times = {},
const std::vector<DataSize>& packets_sizes = {}) {
std::vector<PacketResult> packet_results;
for (size_t i = 0; i < packets_send_times.size(); ++i) {
SentPacket sent_packet;
sent_packet.send_time = packets_send_times[i];
if (packets_sizes.empty()) {
sent_packet.size = kDefaultPacketSize;
} else {
sent_packet.size = packets_sizes[i];
}
PacketResult packet_result;
packet_result.sent_packet = sent_packet;
if (packets_received_times.empty()) {
packet_result.receive_time = packets_send_times[i] + kDefaultDelay;
} else {
packet_result.receive_time = packets_received_times[i];
}
packet_results.push_back(packet_result);
}
return packet_results;
}
} // namespace
TEST(PccMonitorIntervalTest, InitialValuesAreEqualToOnesSetInConstructor) {
PccMonitorInterval interval{kTargetSendingRate, kStartTime,
kIntervalDuration};
EXPECT_EQ(interval.IsFeedbackCollectionDone(), false);
EXPECT_EQ(interval.GetEndTime(), kStartTime + kIntervalDuration);
EXPECT_EQ(interval.GetTargetSendingRate(), kTargetSendingRate);
}
TEST(PccMonitorIntervalTest, IndicatesDoneWhenFeedbackReceivedAfterInterval) {
PccMonitorInterval interval{kTargetSendingRate, kStartTime,
kIntervalDuration};
interval.OnPacketsFeedback(CreatePacketResults({kStartTime}));
EXPECT_EQ(interval.IsFeedbackCollectionDone(), false);
interval.OnPacketsFeedback(
CreatePacketResults({kStartTime, kStartTime + kIntervalDuration}));
EXPECT_EQ(interval.IsFeedbackCollectionDone(), false);
interval.OnPacketsFeedback(CreatePacketResults(
{kStartTime + kIntervalDuration, kStartTime + 2 * kIntervalDuration}));
EXPECT_EQ(interval.IsFeedbackCollectionDone(), true);
}
TEST(PccMonitorIntervalTest, LossRateIsOneThirdIfLostOnePacketOutOfThree) {
PccMonitorInterval interval{kTargetSendingRate, kStartTime,
kIntervalDuration};
std::vector<Timestamp> start_times = {
kStartTime, kStartTime + 0.1 * kIntervalDuration,
kStartTime + 0.5 * kIntervalDuration, kStartTime + kIntervalDuration,
kStartTime + 2 * kIntervalDuration};
std::vector<Timestamp> end_times = {
kStartTime + 2 * kIntervalDuration, kStartTime + 2 * kIntervalDuration,
Timestamp::Infinity(), kStartTime + 2 * kIntervalDuration,
kStartTime + 4 * kIntervalDuration};
std::vector<DataSize> packet_sizes = {
kDefaultPacketSize, 2 * kDefaultPacketSize, 3 * kDefaultPacketSize,
4 * kDefaultPacketSize, 5 * kDefaultPacketSize};
std::vector<PacketResult> packet_results =
CreatePacketResults(start_times, end_times, packet_sizes);
interval.OnPacketsFeedback(packet_results);
EXPECT_EQ(interval.IsFeedbackCollectionDone(), true);
EXPECT_DOUBLE_EQ(interval.GetLossRate(), 1. / 3);
}
TEST(PccMonitorIntervalTest, DelayGradientIsZeroIfNoChangeInPacketDelay) {
PccMonitorInterval monitor_interval(kTargetSendingRate, kStartTime,
kIntervalDuration);
monitor_interval.OnPacketsFeedback(CreatePacketResults(
{kStartTime + kPacketsDelta, kStartTime + 2 * kPacketsDelta,
kStartTime + 3 * kPacketsDelta, kStartTime + 2 * kIntervalDuration},
{kStartTime + kDefaultDelay, Timestamp::Infinity(),
kStartTime + kDefaultDelay + 2 * kPacketsDelta, Timestamp::Infinity()},
{}));
// Delay gradient should be zero, because both received packets have the
// same one way delay.
EXPECT_DOUBLE_EQ(
monitor_interval.ComputeDelayGradient(kDelayGradientThreshold), 0);
}
TEST(PccMonitorIntervalTest,
DelayGradientIsZeroWhenOnePacketSentInMonitorInterval) {
PccMonitorInterval monitor_interval(kTargetSendingRate, kStartTime,
kIntervalDuration);
monitor_interval.OnPacketsFeedback(CreatePacketResults(
{kStartTime + kPacketsDelta, kStartTime + 2 * kIntervalDuration},
{kStartTime + kDefaultDelay, kStartTime + 3 * kIntervalDuration}, {}));
// Only one received packet belongs to the monitor_interval, delay gradient
// should be zero in this case.
EXPECT_DOUBLE_EQ(
monitor_interval.ComputeDelayGradient(kDelayGradientThreshold), 0);
}
TEST(PccMonitorIntervalTest, DelayGradientIsOne) {
PccMonitorInterval monitor_interval(kTargetSendingRate, kStartTime,
kIntervalDuration);
monitor_interval.OnPacketsFeedback(CreatePacketResults(
{kStartTime + kPacketsDelta, kStartTime + 2 * kPacketsDelta,
kStartTime + 3 * kPacketsDelta, kStartTime + 3 * kIntervalDuration},
{kStartTime + kDefaultDelay, Timestamp::Infinity(),
kStartTime + 4 * kPacketsDelta + kDefaultDelay,
kStartTime + 3 * kIntervalDuration},
{}));
EXPECT_DOUBLE_EQ(
monitor_interval.ComputeDelayGradient(kDelayGradientThreshold), 1);
}
TEST(PccMonitorIntervalTest, DelayGradientIsMinusOne) {
PccMonitorInterval monitor_interval(kTargetSendingRate, kStartTime,
kIntervalDuration);
monitor_interval.OnPacketsFeedback(CreatePacketResults(
{kStartTime + kPacketsDelta, kStartTime + 2 * kPacketsDelta,
kStartTime + 5 * kPacketsDelta, kStartTime + 2 * kIntervalDuration},
{kStartTime + kDefaultDelay, Timestamp::Infinity(),
kStartTime + kDefaultDelay, kStartTime + 3 * kIntervalDuration},
{}));
EXPECT_DOUBLE_EQ(
monitor_interval.ComputeDelayGradient(kDelayGradientThreshold), -1);
}
TEST(PccMonitorIntervalTest,
DelayGradientIsZeroIfItSmallerWhenGradientThreshold) {
PccMonitorInterval monitor_interval(kTargetSendingRate, kStartTime,
kIntervalDuration);
monitor_interval.OnPacketsFeedback(CreatePacketResults(
{kStartTime + kPacketsDelta, kStartTime + kPacketsDelta,
kStartTime + 102 * kPacketsDelta, kStartTime + 2 * kIntervalDuration},
{kStartTime + kDefaultDelay, Timestamp::Infinity(),
kStartTime + kDefaultDelay + kPacketsDelta,
kStartTime + 3 * kIntervalDuration},
{}));
// Delay gradient is less than 0.01 hence should be treated as zero.
EXPECT_DOUBLE_EQ(
monitor_interval.ComputeDelayGradient(kDelayGradientThreshold), 0);
}
TEST(PccMonitorIntervalTest,
DelayGradientIsZeroWhenAllPacketsSentAtTheSameTime) {
PccMonitorInterval monitor_interval(kTargetSendingRate, kStartTime,
kIntervalDuration);
monitor_interval.OnPacketsFeedback(CreatePacketResults(
{kStartTime + kPacketsDelta, kStartTime + kPacketsDelta,
kStartTime + kPacketsDelta, kStartTime + 2 * kIntervalDuration},
{kStartTime + kDefaultDelay, Timestamp::Infinity(),
kStartTime + kDefaultDelay + kPacketsDelta,
kStartTime + 3 * kIntervalDuration},
{}));
// If all packets were sent at the same time, then delay gradient should be
// zero.
EXPECT_DOUBLE_EQ(
monitor_interval.ComputeDelayGradient(kDelayGradientThreshold), 0);
}
} // namespace test
} // namespace pcc
} // namespace webrtc