AGC2: update adaptive digital test

This CL improves `GainController2::CheckGainAdaptiveDigital`, namely:
- correctly initialize AGC2 with the correct number of channels
- attenuate the input signal in order to avoid that the target gain is
  set to zero (which was the case before)
- run AG2 adaptive digital for a longer period to allow time to trigger
  the adaptive behavior (namely, from 2s to 10s)
- minor code style improvements

Bug: webrtc:7494
Change-Id: Ib41de088b341bb30460238b83e306a507b2bc5af
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/233101
Commit-Queue: Alessio Bazzica <alessiob@webrtc.org>
Reviewed-by: Sam Zackrisson <saza@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#35099}
This commit is contained in:
Alessio Bazzica 2021-09-27 17:06:40 +02:00 committed by WebRTC LUCI CQ
parent 8d9395d30b
commit 6ee9734887

View File

@ -13,6 +13,7 @@
#include <algorithm>
#include <cmath>
#include <memory>
#include <numeric>
#include "api/array_view.h"
#include "modules/audio_processing/agc2/agc2_testing_common.h"
@ -26,24 +27,24 @@ namespace webrtc {
namespace test {
namespace {
void SetAudioBufferSamples(float value, AudioBuffer* ab) {
// Sets all the samples in `ab` to `value`.
for (size_t k = 0; k < ab->num_channels(); ++k) {
std::fill(ab->channels()[k], ab->channels()[k] + ab->num_frames(), value);
// Sets all the samples in `ab` to `value`.
void SetAudioBufferSamples(float value, AudioBuffer& ab) {
for (size_t k = 0; k < ab.num_channels(); ++k) {
std::fill(ab.channels()[k], ab.channels()[k] + ab.num_frames(), value);
}
}
float RunAgc2WithConstantInput(GainController2* agc2,
float RunAgc2WithConstantInput(GainController2& agc2,
float input_level,
size_t num_frames,
int sample_rate) {
const int num_samples = rtc::CheckedDivExact(sample_rate, 100);
AudioBuffer ab(sample_rate, 1, sample_rate, 1, sample_rate, 1);
int num_frames,
int sample_rate_hz) {
const int num_samples = rtc::CheckedDivExact(sample_rate_hz, 100);
AudioBuffer ab(sample_rate_hz, 1, sample_rate_hz, 1, sample_rate_hz, 1);
// Give time to the level estimator to converge.
for (size_t i = 0; i < num_frames + 1; ++i) {
SetAudioBufferSamples(input_level, &ab);
agc2->Process(&ab);
for (int i = 0; i < num_frames + 1; ++i) {
SetAudioBufferSamples(input_level, ab);
agc2.Process(&ab);
}
// Return the last sample from the last processed frame.
@ -55,60 +56,19 @@ AudioProcessing::Config::GainController2 CreateAgc2FixedDigitalModeConfig(
AudioProcessing::Config::GainController2 config;
config.adaptive_digital.enabled = false;
config.fixed_digital.gain_db = fixed_gain_db;
// TODO(alessiob): Check why ASSERT_TRUE() below does not compile.
EXPECT_TRUE(GainController2::Validate(config));
return config;
}
std::unique_ptr<GainController2> CreateAgc2FixedDigitalMode(
float fixed_gain_db,
size_t sample_rate_hz) {
int sample_rate_hz) {
auto agc2 = std::make_unique<GainController2>();
agc2->ApplyConfig(CreateAgc2FixedDigitalModeConfig(fixed_gain_db));
agc2->Initialize(sample_rate_hz, /*num_channels=*/1);
return agc2;
}
float GainDbAfterProcessingFile(GainController2& gain_controller,
int max_duration_ms) {
// Set up an AudioBuffer to be filled from the speech file.
constexpr size_t kStereo = 2u;
const StreamConfig capture_config(AudioProcessing::kSampleRate48kHz, kStereo,
false);
AudioBuffer ab(capture_config.sample_rate_hz(), capture_config.num_channels(),
capture_config.sample_rate_hz(), capture_config.num_channels(),
capture_config.sample_rate_hz(),
capture_config.num_channels());
test::InputAudioFile capture_file(
test::GetApmCaptureTestVectorFileName(AudioProcessing::kSampleRate48kHz));
std::vector<float> capture_input(capture_config.num_frames() *
capture_config.num_channels());
// Process the input file which must be long enough to cover
// `max_duration_ms`.
RTC_DCHECK_GT(max_duration_ms, 0);
const int num_frames = rtc::CheckedDivExact(max_duration_ms, 10);
for (int i = 0; i < num_frames; ++i) {
ReadFloatSamplesFromStereoFile(capture_config.num_frames(),
capture_config.num_channels(), &capture_file,
capture_input);
test::CopyVectorToAudioBuffer(capture_config, capture_input, &ab);
gain_controller.Process(&ab);
}
// Send in a last frame with minimum dBFS level.
constexpr float sample_value = 1.f;
SetAudioBufferSamples(sample_value, &ab);
gain_controller.Process(&ab);
// Measure the RMS level after processing.
float rms = 0.0f;
for (size_t i = 0; i < capture_config.num_frames(); ++i) {
rms += ab.channels()[0][i] * ab.channels()[0][i];
}
// Return the applied gain in dB.
return 20.0f * std::log10(std::sqrt(rms / capture_config.num_frames()));
}
} // namespace
TEST(GainController2, CheckDefaultConfig) {
@ -119,33 +79,33 @@ TEST(GainController2, CheckDefaultConfig) {
TEST(GainController2, CheckFixedDigitalConfig) {
AudioProcessing::Config::GainController2 config;
// Attenuation is not allowed.
config.fixed_digital.gain_db = -5.f;
config.fixed_digital.gain_db = -5.0f;
EXPECT_FALSE(GainController2::Validate(config));
// No gain is allowed.
config.fixed_digital.gain_db = 0.f;
config.fixed_digital.gain_db = 0.0f;
EXPECT_TRUE(GainController2::Validate(config));
// Positive gain is allowed.
config.fixed_digital.gain_db = 15.f;
config.fixed_digital.gain_db = 15.0f;
EXPECT_TRUE(GainController2::Validate(config));
}
TEST(GainController2, CheckAdaptiveDigitalMaxGainChangeSpeedConfig) {
AudioProcessing::Config::GainController2 config;
config.adaptive_digital.max_gain_change_db_per_second = -1.f;
config.adaptive_digital.max_gain_change_db_per_second = -1.0f;
EXPECT_FALSE(GainController2::Validate(config));
config.adaptive_digital.max_gain_change_db_per_second = 0.f;
config.adaptive_digital.max_gain_change_db_per_second = 0.0f;
EXPECT_FALSE(GainController2::Validate(config));
config.adaptive_digital.max_gain_change_db_per_second = 5.f;
config.adaptive_digital.max_gain_change_db_per_second = 5.0f;
EXPECT_TRUE(GainController2::Validate(config));
}
TEST(GainController2, CheckAdaptiveDigitalMaxOutputNoiseLevelConfig) {
AudioProcessing::Config::GainController2 config;
config.adaptive_digital.max_output_noise_level_dbfs = 5.f;
config.adaptive_digital.max_output_noise_level_dbfs = 5.0f;
EXPECT_FALSE(GainController2::Validate(config));
config.adaptive_digital.max_output_noise_level_dbfs = 0.f;
config.adaptive_digital.max_output_noise_level_dbfs = 0.0f;
EXPECT_TRUE(GainController2::Validate(config));
config.adaptive_digital.max_output_noise_level_dbfs = -5.f;
config.adaptive_digital.max_output_noise_level_dbfs = -5.0f;
EXPECT_TRUE(GainController2::Validate(config));
}
@ -157,23 +117,23 @@ TEST(GainController2, ApplyDefaultConfig) {
}
TEST(GainController2FixedDigital, GainShouldChangeOnSetGain) {
constexpr float kInputLevel = 1000.f;
constexpr float kInputLevel = 1000.0f;
constexpr size_t kNumFrames = 5;
constexpr size_t kSampleRateHz = 8000;
constexpr float kGain0Db = 0.f;
constexpr float kGain20Db = 20.f;
constexpr float kGain0Db = 0.0f;
constexpr float kGain20Db = 20.0f;
auto agc2_fixed = CreateAgc2FixedDigitalMode(kGain0Db, kSampleRateHz);
// Signal level is unchanged with 0 db gain.
EXPECT_FLOAT_EQ(RunAgc2WithConstantInput(agc2_fixed.get(), kInputLevel,
kNumFrames, kSampleRateHz),
EXPECT_FLOAT_EQ(RunAgc2WithConstantInput(*agc2_fixed, kInputLevel, kNumFrames,
kSampleRateHz),
kInputLevel);
// +20 db should increase signal by a factor of 10.
agc2_fixed->ApplyConfig(CreateAgc2FixedDigitalModeConfig(kGain20Db));
EXPECT_FLOAT_EQ(RunAgc2WithConstantInput(agc2_fixed.get(), kInputLevel,
kNumFrames, kSampleRateHz),
EXPECT_FLOAT_EQ(RunAgc2WithConstantInput(*agc2_fixed, kInputLevel, kNumFrames,
kSampleRateHz),
kInputLevel * 10);
}
@ -182,27 +142,27 @@ TEST(GainController2FixedDigital, ChangeFixedGainShouldBeFastAndTimeInvariant) {
// input signal when the gain changes.
constexpr size_t kNumFrames = 5;
constexpr float kInputLevel = 1000.f;
constexpr float kInputLevel = 1000.0f;
constexpr size_t kSampleRateHz = 8000;
constexpr float kGainDbLow = 0.f;
constexpr float kGainDbHigh = 25.f;
constexpr float kGainDbLow = 0.0f;
constexpr float kGainDbHigh = 25.0f;
static_assert(kGainDbLow < kGainDbHigh, "");
auto agc2_fixed = CreateAgc2FixedDigitalMode(kGainDbLow, kSampleRateHz);
// Start with a lower gain.
const float output_level_pre = RunAgc2WithConstantInput(
agc2_fixed.get(), kInputLevel, kNumFrames, kSampleRateHz);
*agc2_fixed, kInputLevel, kNumFrames, kSampleRateHz);
// Increase gain.
agc2_fixed->ApplyConfig(CreateAgc2FixedDigitalModeConfig(kGainDbHigh));
static_cast<void>(RunAgc2WithConstantInput(agc2_fixed.get(), kInputLevel,
static_cast<void>(RunAgc2WithConstantInput(*agc2_fixed, kInputLevel,
kNumFrames, kSampleRateHz));
// Back to the lower gain.
agc2_fixed->ApplyConfig(CreateAgc2FixedDigitalModeConfig(kGainDbLow));
const float output_level_post = RunAgc2WithConstantInput(
agc2_fixed.get(), kInputLevel, kNumFrames, kSampleRateHz);
*agc2_fixed, kInputLevel, kNumFrames, kSampleRateHz);
EXPECT_EQ(output_level_pre, output_level_post);
}
@ -227,7 +187,7 @@ class FixedDigitalTest
public ::testing::WithParamInterface<FixedDigitalTestParams> {};
TEST_P(FixedDigitalTest, CheckSaturationBehaviorWithLimiter) {
const float kInputLevel = 32767.f;
const float kInputLevel = 32767.0f;
const size_t kNumFrames = 5;
const auto params = GetParam();
@ -238,11 +198,11 @@ TEST_P(FixedDigitalTest, CheckSaturationBehaviorWithLimiter) {
SCOPED_TRACE(std::to_string(gain_db));
auto agc2_fixed = CreateAgc2FixedDigitalMode(gain_db, params.sample_rate);
const float processed_sample = RunAgc2WithConstantInput(
agc2_fixed.get(), kInputLevel, kNumFrames, params.sample_rate);
*agc2_fixed, kInputLevel, kNumFrames, params.sample_rate);
if (params.saturation_expected) {
EXPECT_FLOAT_EQ(processed_sample, 32767.f);
EXPECT_FLOAT_EQ(processed_sample, 32767.0f);
} else {
EXPECT_LT(processed_sample, 32767.f);
EXPECT_LT(processed_sample, 32767.0f);
}
}
}
@ -265,29 +225,68 @@ INSTANTIATE_TEST_SUITE_P(
// When gain > `test::kLimiterMaxInputLevelDbFs`, the limiter will
// saturate the signal (at any sample rate).
FixedDigitalTestParams(test::kLimiterMaxInputLevelDbFs + 0.01f,
10.f,
10.0f,
8000,
true),
FixedDigitalTestParams(test::kLimiterMaxInputLevelDbFs + 0.01f,
10.f,
10.0f,
48000,
true)));
// Checks that the gain applied at the end of a PCM samples file is close to the
// expected value.
TEST(GainController2, CheckGainAdaptiveDigital) {
constexpr float kExpectedGainDb = 4.3f;
constexpr float kToleranceDb = 0.5f;
GainController2 gain_controller2;
gain_controller2.Initialize(AudioProcessing::kSampleRate48kHz,
/*num_channels=*/1);
// Processes a test audio file and checks that the gain applied at the end of
// the recording is close to the expected value.
TEST(GainController2, CheckFinalGainWithAdaptiveDigitalController) {
// Create AGC2 enabling only the adaptive digital controller.
GainController2 agc2;
AudioProcessing::Config::GainController2 config;
config.fixed_digital.gain_db = 0.0f;
config.adaptive_digital.enabled = true;
gain_controller2.ApplyConfig(config);
EXPECT_NEAR(
GainDbAfterProcessingFile(gain_controller2, /*max_duration_ms=*/2000),
kExpectedGainDb, kToleranceDb);
agc2.ApplyConfig(config);
// The input audio is a 48k stereo recording.
constexpr int kSampleRateHz = AudioProcessing::kSampleRate48kHz;
constexpr int kStereo = 2;
test::InputAudioFile input_file(
test::GetApmCaptureTestVectorFileName(kSampleRateHz),
/*loop_at_end=*/true);
const StreamConfig stream_config(kSampleRateHz, kStereo,
/*has_keyboard=*/false);
// Initialize AGC2 for the used input.
agc2.Initialize(kSampleRateHz, kStereo);
// Init buffers.
constexpr int kFrameDurationMs = 10;
std::vector<float> frame(kStereo * stream_config.num_frames());
AudioBuffer audio_buffer(kSampleRateHz, kStereo, kSampleRateHz, kStereo,
kSampleRateHz, kStereo);
// Simulate.
constexpr float kGainDb = -6.0f;
const float gain = std::pow(10.0f, kGainDb / 20.0f);
constexpr int kDurationMs = 10000;
constexpr int kNumFramesToProcess = kDurationMs / kFrameDurationMs;
for (int i = 0; i < kNumFramesToProcess; ++i) {
ReadFloatSamplesFromStereoFile(stream_config.num_frames(),
stream_config.num_channels(), &input_file,
frame);
// Apply a fixed gain to the input audio.
for (float& x : frame)
x *= gain;
test::CopyVectorToAudioBuffer(stream_config, frame, &audio_buffer);
// Process.
agc2.Process(&audio_buffer);
}
// Estimate the applied gain by processing a probing frame.
SetAudioBufferSamples(/*value=*/1.0f, audio_buffer);
agc2.Process(&audio_buffer);
const float applied_gain_db =
20.0f * std::log10(audio_buffer.channels_const()[0][0]);
constexpr float kExpectedGainDb = 5.6f;
constexpr float kToleranceDb = 0.3f;
EXPECT_NEAR(applied_gain_db, kExpectedGainDb, kToleranceDb);
}
} // namespace test