Cleanup: Merges Thread and MessageQueue.

Since rtc::Thread is the only class inheriting from rtc::MessageQueue
and most members of MessageQueue are public or protected the split is
not adding much value. In preparation for future cleanup, this cl merges
the two classes.

Bug: webrtc:9883
Change-Id: Ia0efb4349f66f653aa34fa4d244998f187e3ce36
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/165340
Commit-Queue: Sebastian Jansson <srte@webrtc.org>
Reviewed-by: Karl Wiberg <kwiberg@webrtc.org>
Reviewed-by: Steve Anton <steveanton@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#30235}
This commit is contained in:
Sebastian Jansson 2020-01-13 14:07:22 +01:00 committed by Commit Bot
parent 7d43801a07
commit 6ea2c6ae87
12 changed files with 805 additions and 898 deletions

View File

@ -845,7 +845,6 @@ rtc_library("rtc_base") {
"message_digest.h", "message_digest.h",
"message_handler.cc", "message_handler.cc",
"message_handler.h", "message_handler.h",
"message_queue.cc",
"message_queue.h", "message_queue.h",
"net_helper.cc", "net_helper.cc",
"net_helper.h", "net_helper.h",
@ -909,6 +908,7 @@ rtc_library("rtc_base") {
"stream.h", "stream.h",
"thread.cc", "thread.cc",
"thread.h", "thread.h",
"thread_message.h",
"unique_id_generator.cc", "unique_id_generator.cc",
"unique_id_generator.h", "unique_id_generator.h",
] ]

View File

@ -23,14 +23,14 @@ AsyncInvoker::AsyncInvoker()
AsyncInvoker::~AsyncInvoker() { AsyncInvoker::~AsyncInvoker() {
destroying_.store(true, std::memory_order_relaxed); destroying_.store(true, std::memory_order_relaxed);
// Messages for this need to be cleared *before* our destructor is complete. // Messages for this need to be cleared *before* our destructor is complete.
MessageQueueManager::Clear(this); ThreadManager::Clear(this);
// And we need to wait for any invocations that are still in progress on // And we need to wait for any invocations that are still in progress on
// other threads. Using memory_order_acquire for synchronization with // other threads. Using memory_order_acquire for synchronization with
// AsyncClosure destructors. // AsyncClosure destructors.
while (pending_invocations_.load(std::memory_order_acquire) > 0) { while (pending_invocations_.load(std::memory_order_acquire) > 0) {
// If the destructor was called while AsyncInvoke was being called by // If the destructor was called while AsyncInvoke was being called by
// another thread, WITHIN an AsyncInvoked functor, it may do another // another thread, WITHIN an AsyncInvoked functor, it may do another
// Thread::Post even after we called MessageQueueManager::Clear(this). So // Thread::Post even after we called ThreadManager::Clear(this). So
// we need to keep calling Clear to discard these posts. // we need to keep calling Clear to discard these posts.
Thread::Current()->Clear(this); Thread::Current()->Clear(this);
invocation_complete_->Wait(Event::kForever); invocation_complete_->Wait(Event::kForever);
@ -68,7 +68,7 @@ void AsyncInvoker::Flush(Thread* thread, uint32_t id /*= MQID_ANY*/) {
} }
void AsyncInvoker::Clear() { void AsyncInvoker::Clear() {
MessageQueueManager::Clear(this); ThreadManager::Clear(this);
} }
void AsyncInvoker::DoInvoke(const Location& posted_from, void AsyncInvoker::DoInvoke(const Location& posted_from,

View File

@ -11,7 +11,7 @@
#include "rtc_base/fake_clock.h" #include "rtc_base/fake_clock.h"
#include "rtc_base/checks.h" #include "rtc_base/checks.h"
#include "rtc_base/message_queue.h" #include "rtc_base/thread.h"
namespace rtc { namespace rtc {
@ -35,12 +35,12 @@ void ThreadProcessingFakeClock::SetTime(webrtc::Timestamp time) {
clock_.SetTime(time); clock_.SetTime(time);
// If message queues are waiting in a socket select() with a timeout provided // If message queues are waiting in a socket select() with a timeout provided
// by the OS, they should wake up and dispatch all messages that are ready. // by the OS, they should wake up and dispatch all messages that are ready.
MessageQueueManager::ProcessAllMessageQueuesForTesting(); ThreadManager::ProcessAllMessageQueuesForTesting();
} }
void ThreadProcessingFakeClock::AdvanceTime(webrtc::TimeDelta delta) { void ThreadProcessingFakeClock::AdvanceTime(webrtc::TimeDelta delta) {
clock_.AdvanceTime(delta); clock_.AdvanceTime(delta);
MessageQueueManager::ProcessAllMessageQueuesForTesting(); ThreadManager::ProcessAllMessageQueuesForTesting();
} }
ScopedBaseFakeClock::ScopedBaseFakeClock() { ScopedBaseFakeClock::ScopedBaseFakeClock() {

View File

@ -10,12 +10,12 @@
#include "rtc_base/message_handler.h" #include "rtc_base/message_handler.h"
#include "rtc_base/message_queue.h" #include "rtc_base/thread.h"
namespace rtc { namespace rtc {
MessageHandler::~MessageHandler() { MessageHandler::~MessageHandler() {
MessageQueueManager::Clear(this); ThreadManager::Clear(this);
} }
} // namespace rtc } // namespace rtc

View File

@ -1,523 +0,0 @@
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/message_queue.h"
#include <string>
#include <utility>
#include "absl/algorithm/container.h"
#include "rtc_base/atomic_ops.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/thread.h"
#include "rtc_base/time_utils.h"
#include "rtc_base/trace_event.h"
namespace rtc {
namespace {
const int kMaxMsgLatency = 150; // 150 ms
const int kSlowDispatchLoggingThreshold = 50; // 50 ms
class RTC_SCOPED_LOCKABLE MarkProcessingCritScope {
public:
MarkProcessingCritScope(const CriticalSection* cs, size_t* processing)
RTC_EXCLUSIVE_LOCK_FUNCTION(cs)
: cs_(cs), processing_(processing) {
cs_->Enter();
*processing_ += 1;
}
~MarkProcessingCritScope() RTC_UNLOCK_FUNCTION() {
*processing_ -= 1;
cs_->Leave();
}
private:
const CriticalSection* const cs_;
size_t* processing_;
RTC_DISALLOW_COPY_AND_ASSIGN(MarkProcessingCritScope);
};
} // namespace
//------------------------------------------------------------------
// MessageQueueManager
MessageQueueManager* MessageQueueManager::Instance() {
static MessageQueueManager* const instance = new MessageQueueManager;
return instance;
}
MessageQueueManager::MessageQueueManager() : processing_(0) {}
MessageQueueManager::~MessageQueueManager() {}
void MessageQueueManager::Add(MessageQueue* message_queue) {
return Instance()->AddInternal(message_queue);
}
void MessageQueueManager::AddInternal(MessageQueue* message_queue) {
CritScope cs(&crit_);
// Prevent changes while the list of message queues is processed.
RTC_DCHECK_EQ(processing_, 0);
message_queues_.push_back(message_queue);
}
void MessageQueueManager::Remove(MessageQueue* message_queue) {
return Instance()->RemoveInternal(message_queue);
}
void MessageQueueManager::RemoveInternal(MessageQueue* message_queue) {
{
CritScope cs(&crit_);
// Prevent changes while the list of message queues is processed.
RTC_DCHECK_EQ(processing_, 0);
std::vector<MessageQueue*>::iterator iter;
iter = absl::c_find(message_queues_, message_queue);
if (iter != message_queues_.end()) {
message_queues_.erase(iter);
}
}
}
void MessageQueueManager::Clear(MessageHandler* handler) {
return Instance()->ClearInternal(handler);
}
void MessageQueueManager::ClearInternal(MessageHandler* handler) {
// Deleted objects may cause re-entrant calls to ClearInternal. This is
// allowed as the list of message queues does not change while queues are
// cleared.
MarkProcessingCritScope cs(&crit_, &processing_);
for (MessageQueue* queue : message_queues_) {
queue->Clear(handler);
}
}
void MessageQueueManager::ProcessAllMessageQueuesForTesting() {
return Instance()->ProcessAllMessageQueuesInternal();
}
void MessageQueueManager::ProcessAllMessageQueuesInternal() {
// This works by posting a delayed message at the current time and waiting
// for it to be dispatched on all queues, which will ensure that all messages
// that came before it were also dispatched.
volatile int queues_not_done = 0;
// This class is used so that whether the posted message is processed, or the
// message queue is simply cleared, queues_not_done gets decremented.
class ScopedIncrement : public MessageData {
public:
ScopedIncrement(volatile int* value) : value_(value) {
AtomicOps::Increment(value_);
}
~ScopedIncrement() override { AtomicOps::Decrement(value_); }
private:
volatile int* value_;
};
{
MarkProcessingCritScope cs(&crit_, &processing_);
for (MessageQueue* queue : message_queues_) {
if (!queue->IsProcessingMessagesForTesting()) {
// If the queue is not processing messages, it can
// be ignored. If we tried to post a message to it, it would be dropped
// or ignored.
continue;
}
queue->PostDelayed(RTC_FROM_HERE, 0, nullptr, MQID_DISPOSE,
new ScopedIncrement(&queues_not_done));
}
}
rtc::Thread* current = rtc::Thread::Current();
// Note: One of the message queues may have been on this thread, which is
// why we can't synchronously wait for queues_not_done to go to 0; we need
// to process messages as well.
while (AtomicOps::AcquireLoad(&queues_not_done) > 0) {
if (current) {
current->ProcessMessages(0);
}
}
}
//------------------------------------------------------------------
// MessageQueue
MessageQueue::MessageQueue(SocketServer* ss, bool init_queue)
: fPeekKeep_(false),
dmsgq_next_num_(0),
fInitialized_(false),
fDestroyed_(false),
stop_(0),
ss_(ss) {
RTC_DCHECK(ss);
// Currently, MessageQueue holds a socket server, and is the base class for
// Thread. It seems like it makes more sense for Thread to hold the socket
// server, and provide it to the MessageQueue, since the Thread controls
// the I/O model, and MQ is agnostic to those details. Anyway, this causes
// messagequeue_unittest to depend on network libraries... yuck.
if (init_queue) {
DoInit();
}
}
MessageQueue::MessageQueue(std::unique_ptr<SocketServer> ss, bool init_queue)
: MessageQueue(ss.get(), init_queue) {
own_ss_ = std::move(ss);
}
MessageQueue::~MessageQueue() {
DoDestroy();
}
void MessageQueue::DoInit() {
if (fInitialized_) {
return;
}
fInitialized_ = true;
MessageQueueManager::Add(this);
}
void MessageQueue::DoDestroy() {
if (fDestroyed_) {
return;
}
fDestroyed_ = true;
// The signal is done from here to ensure
// that it always gets called when the queue
// is going away.
SignalQueueDestroyed();
MessageQueueManager::Remove(this);
ClearInternal(nullptr, MQID_ANY, nullptr);
if (ss_) {
ss_->SetMessageQueue(nullptr);
}
}
SocketServer* MessageQueue::socketserver() {
return ss_;
}
void MessageQueue::WakeUpSocketServer() {
ss_->WakeUp();
}
void MessageQueue::Quit() {
AtomicOps::ReleaseStore(&stop_, 1);
WakeUpSocketServer();
}
bool MessageQueue::IsQuitting() {
return AtomicOps::AcquireLoad(&stop_) != 0;
}
bool MessageQueue::IsProcessingMessagesForTesting() {
return !IsQuitting();
}
void MessageQueue::Restart() {
AtomicOps::ReleaseStore(&stop_, 0);
}
bool MessageQueue::Peek(Message* pmsg, int cmsWait) {
if (fPeekKeep_) {
*pmsg = msgPeek_;
return true;
}
if (!Get(pmsg, cmsWait))
return false;
msgPeek_ = *pmsg;
fPeekKeep_ = true;
return true;
}
bool MessageQueue::Get(Message* pmsg, int cmsWait, bool process_io) {
// Return and clear peek if present
// Always return the peek if it exists so there is Peek/Get symmetry
if (fPeekKeep_) {
*pmsg = msgPeek_;
fPeekKeep_ = false;
return true;
}
// Get w/wait + timer scan / dispatch + socket / event multiplexer dispatch
int64_t cmsTotal = cmsWait;
int64_t cmsElapsed = 0;
int64_t msStart = TimeMillis();
int64_t msCurrent = msStart;
while (true) {
// Check for sent messages
ReceiveSends();
// Check for posted events
int64_t cmsDelayNext = kForever;
bool first_pass = true;
while (true) {
// All queue operations need to be locked, but nothing else in this loop
// (specifically handling disposed message) can happen inside the crit.
// Otherwise, disposed MessageHandlers will cause deadlocks.
{
CritScope cs(&crit_);
// On the first pass, check for delayed messages that have been
// triggered and calculate the next trigger time.
if (first_pass) {
first_pass = false;
while (!dmsgq_.empty()) {
if (msCurrent < dmsgq_.top().msTrigger_) {
cmsDelayNext = TimeDiff(dmsgq_.top().msTrigger_, msCurrent);
break;
}
msgq_.push_back(dmsgq_.top().msg_);
dmsgq_.pop();
}
}
// Pull a message off the message queue, if available.
if (msgq_.empty()) {
break;
} else {
*pmsg = msgq_.front();
msgq_.pop_front();
}
} // crit_ is released here.
// Log a warning for time-sensitive messages that we're late to deliver.
if (pmsg->ts_sensitive) {
int64_t delay = TimeDiff(msCurrent, pmsg->ts_sensitive);
if (delay > 0) {
RTC_LOG_F(LS_WARNING)
<< "id: " << pmsg->message_id
<< " delay: " << (delay + kMaxMsgLatency) << "ms";
}
}
// If this was a dispose message, delete it and skip it.
if (MQID_DISPOSE == pmsg->message_id) {
RTC_DCHECK(nullptr == pmsg->phandler);
delete pmsg->pdata;
*pmsg = Message();
continue;
}
return true;
}
if (IsQuitting())
break;
// Which is shorter, the delay wait or the asked wait?
int64_t cmsNext;
if (cmsWait == kForever) {
cmsNext = cmsDelayNext;
} else {
cmsNext = std::max<int64_t>(0, cmsTotal - cmsElapsed);
if ((cmsDelayNext != kForever) && (cmsDelayNext < cmsNext))
cmsNext = cmsDelayNext;
}
{
// Wait and multiplex in the meantime
if (!ss_->Wait(static_cast<int>(cmsNext), process_io))
return false;
}
// If the specified timeout expired, return
msCurrent = TimeMillis();
cmsElapsed = TimeDiff(msCurrent, msStart);
if (cmsWait != kForever) {
if (cmsElapsed >= cmsWait)
return false;
}
}
return false;
}
void MessageQueue::ReceiveSends() {}
void MessageQueue::Post(const Location& posted_from,
MessageHandler* phandler,
uint32_t id,
MessageData* pdata,
bool time_sensitive) {
if (IsQuitting()) {
delete pdata;
return;
}
// Keep thread safe
// Add the message to the end of the queue
// Signal for the multiplexer to return
{
CritScope cs(&crit_);
Message msg;
msg.posted_from = posted_from;
msg.phandler = phandler;
msg.message_id = id;
msg.pdata = pdata;
if (time_sensitive) {
msg.ts_sensitive = TimeMillis() + kMaxMsgLatency;
}
msgq_.push_back(msg);
}
WakeUpSocketServer();
}
void MessageQueue::PostDelayed(const Location& posted_from,
int cmsDelay,
MessageHandler* phandler,
uint32_t id,
MessageData* pdata) {
return DoDelayPost(posted_from, cmsDelay, TimeAfter(cmsDelay), phandler, id,
pdata);
}
void MessageQueue::PostAt(const Location& posted_from,
uint32_t tstamp,
MessageHandler* phandler,
uint32_t id,
MessageData* pdata) {
// This should work even if it is used (unexpectedly).
int64_t delay = static_cast<uint32_t>(TimeMillis()) - tstamp;
return DoDelayPost(posted_from, delay, tstamp, phandler, id, pdata);
}
void MessageQueue::PostAt(const Location& posted_from,
int64_t tstamp,
MessageHandler* phandler,
uint32_t id,
MessageData* pdata) {
return DoDelayPost(posted_from, TimeUntil(tstamp), tstamp, phandler, id,
pdata);
}
void MessageQueue::DoDelayPost(const Location& posted_from,
int64_t cmsDelay,
int64_t tstamp,
MessageHandler* phandler,
uint32_t id,
MessageData* pdata) {
if (IsQuitting()) {
delete pdata;
return;
}
// Keep thread safe
// Add to the priority queue. Gets sorted soonest first.
// Signal for the multiplexer to return.
{
CritScope cs(&crit_);
Message msg;
msg.posted_from = posted_from;
msg.phandler = phandler;
msg.message_id = id;
msg.pdata = pdata;
DelayedMessage dmsg(cmsDelay, tstamp, dmsgq_next_num_, msg);
dmsgq_.push(dmsg);
// If this message queue processes 1 message every millisecond for 50 days,
// we will wrap this number. Even then, only messages with identical times
// will be misordered, and then only briefly. This is probably ok.
++dmsgq_next_num_;
RTC_DCHECK_NE(0, dmsgq_next_num_);
}
WakeUpSocketServer();
}
int MessageQueue::GetDelay() {
CritScope cs(&crit_);
if (!msgq_.empty())
return 0;
if (!dmsgq_.empty()) {
int delay = TimeUntil(dmsgq_.top().msTrigger_);
if (delay < 0)
delay = 0;
return delay;
}
return kForever;
}
void MessageQueue::Clear(MessageHandler* phandler,
uint32_t id,
MessageList* removed) {
CritScope cs(&crit_);
ClearInternal(phandler, id, removed);
}
void MessageQueue::ClearInternal(MessageHandler* phandler,
uint32_t id,
MessageList* removed) {
// Remove messages with phandler
if (fPeekKeep_ && msgPeek_.Match(phandler, id)) {
if (removed) {
removed->push_back(msgPeek_);
} else {
delete msgPeek_.pdata;
}
fPeekKeep_ = false;
}
// Remove from ordered message queue
for (MessageList::iterator it = msgq_.begin(); it != msgq_.end();) {
if (it->Match(phandler, id)) {
if (removed) {
removed->push_back(*it);
} else {
delete it->pdata;
}
it = msgq_.erase(it);
} else {
++it;
}
}
// Remove from priority queue. Not directly iterable, so use this approach
PriorityQueue::container_type::iterator new_end = dmsgq_.container().begin();
for (PriorityQueue::container_type::iterator it = new_end;
it != dmsgq_.container().end(); ++it) {
if (it->msg_.Match(phandler, id)) {
if (removed) {
removed->push_back(it->msg_);
} else {
delete it->msg_.pdata;
}
} else {
*new_end++ = *it;
}
}
dmsgq_.container().erase(new_end, dmsgq_.container().end());
dmsgq_.reheap();
}
void MessageQueue::Dispatch(Message* pmsg) {
TRACE_EVENT2("webrtc", "MessageQueue::Dispatch", "src_file",
pmsg->posted_from.file_name(), "src_func",
pmsg->posted_from.function_name());
int64_t start_time = TimeMillis();
pmsg->phandler->OnMessage(pmsg);
int64_t end_time = TimeMillis();
int64_t diff = TimeDiff(end_time, start_time);
if (diff >= kSlowDispatchLoggingThreshold) {
RTC_LOG(LS_INFO) << "Message took " << diff
<< "ms to dispatch. Posted from: "
<< pmsg->posted_from.ToString();
}
}
} // namespace rtc

View File

@ -11,324 +11,8 @@
#ifndef RTC_BASE_MESSAGE_QUEUE_H_ #ifndef RTC_BASE_MESSAGE_QUEUE_H_
#define RTC_BASE_MESSAGE_QUEUE_H_ #define RTC_BASE_MESSAGE_QUEUE_H_
#include <string.h> // TODO(srte): Remove this file when all dependencies has been updated.
#include <algorithm> #include "rtc_base/thread.h"
#include <list>
#include <memory>
#include <queue>
#include <vector>
#include "api/scoped_refptr.h"
#include "rtc_base/constructor_magic.h"
#include "rtc_base/critical_section.h"
#include "rtc_base/location.h"
#include "rtc_base/message_handler.h"
#include "rtc_base/socket_server.h"
#include "rtc_base/system/rtc_export.h"
#include "rtc_base/third_party/sigslot/sigslot.h"
#include "rtc_base/thread_annotations.h"
namespace rtc {
struct Message;
class MessageQueue;
// MessageQueueManager does cleanup of of message queues
class RTC_EXPORT MessageQueueManager {
public:
static void Add(MessageQueue* message_queue);
static void Remove(MessageQueue* message_queue);
static void Clear(MessageHandler* handler);
// TODO(nisse): Delete alias, as soon as downstream code is updated.
static void ProcessAllMessageQueues() { ProcessAllMessageQueuesForTesting(); }
// For testing purposes, for use with a simulated clock.
// Ensures that all message queues have processed delayed messages
// up until the current point in time.
static void ProcessAllMessageQueuesForTesting();
private:
static MessageQueueManager* Instance();
MessageQueueManager();
~MessageQueueManager();
void AddInternal(MessageQueue* message_queue);
void RemoveInternal(MessageQueue* message_queue);
void ClearInternal(MessageHandler* handler);
void ProcessAllMessageQueuesInternal();
// This list contains all live MessageQueues.
std::vector<MessageQueue*> message_queues_ RTC_GUARDED_BY(crit_);
// Methods that don't modify the list of message queues may be called in a
// re-entrant fashion. "processing_" keeps track of the depth of re-entrant
// calls.
CriticalSection crit_;
size_t processing_ RTC_GUARDED_BY(crit_);
};
// Derive from this for specialized data
// App manages lifetime, except when messages are purged
class MessageData {
public:
MessageData() {}
virtual ~MessageData() {}
};
template <class T>
class TypedMessageData : public MessageData {
public:
explicit TypedMessageData(const T& data) : data_(data) {}
const T& data() const { return data_; }
T& data() { return data_; }
private:
T data_;
};
// Like TypedMessageData, but for pointers that require a delete.
template <class T>
class ScopedMessageData : public MessageData {
public:
explicit ScopedMessageData(std::unique_ptr<T> data)
: data_(std::move(data)) {}
// Deprecated.
// TODO(deadbeef): Remove this once downstream applications stop using it.
explicit ScopedMessageData(T* data) : data_(data) {}
// Deprecated.
// TODO(deadbeef): Returning a reference to a unique ptr? Why. Get rid of
// this once downstream applications stop using it, then rename inner_data to
// just data.
const std::unique_ptr<T>& data() const { return data_; }
std::unique_ptr<T>& data() { return data_; }
const T& inner_data() const { return *data_; }
T& inner_data() { return *data_; }
private:
std::unique_ptr<T> data_;
};
// Like ScopedMessageData, but for reference counted pointers.
template <class T>
class ScopedRefMessageData : public MessageData {
public:
explicit ScopedRefMessageData(T* data) : data_(data) {}
const scoped_refptr<T>& data() const { return data_; }
scoped_refptr<T>& data() { return data_; }
private:
scoped_refptr<T> data_;
};
template <class T>
inline MessageData* WrapMessageData(const T& data) {
return new TypedMessageData<T>(data);
}
template <class T>
inline const T& UseMessageData(MessageData* data) {
return static_cast<TypedMessageData<T>*>(data)->data();
}
template <class T>
class DisposeData : public MessageData {
public:
explicit DisposeData(T* data) : data_(data) {}
virtual ~DisposeData() { delete data_; }
private:
T* data_;
};
const uint32_t MQID_ANY = static_cast<uint32_t>(-1);
const uint32_t MQID_DISPOSE = static_cast<uint32_t>(-2);
// No destructor
struct Message {
Message()
: phandler(nullptr), message_id(0), pdata(nullptr), ts_sensitive(0) {}
inline bool Match(MessageHandler* handler, uint32_t id) const {
return (handler == nullptr || handler == phandler) &&
(id == MQID_ANY || id == message_id);
}
Location posted_from;
MessageHandler* phandler;
uint32_t message_id;
MessageData* pdata;
int64_t ts_sensitive;
};
typedef std::list<Message> MessageList;
// DelayedMessage goes into a priority queue, sorted by trigger time. Messages
// with the same trigger time are processed in num_ (FIFO) order.
class DelayedMessage {
public:
DelayedMessage(int64_t delay,
int64_t trigger,
uint32_t num,
const Message& msg)
: cmsDelay_(delay), msTrigger_(trigger), num_(num), msg_(msg) {}
bool operator<(const DelayedMessage& dmsg) const {
return (dmsg.msTrigger_ < msTrigger_) ||
((dmsg.msTrigger_ == msTrigger_) && (dmsg.num_ < num_));
}
int64_t cmsDelay_; // for debugging
int64_t msTrigger_;
uint32_t num_;
Message msg_;
};
class RTC_EXPORT MessageQueue {
public:
static const int kForever = -1;
// Create a new MessageQueue and optionally assign it to the passed
// SocketServer. Subclasses that override Clear should pass false for
// init_queue and call DoInit() from their constructor to prevent races
// with the MessageQueueManager using the object while the vtable is still
// being created.
MessageQueue(SocketServer* ss, bool init_queue);
MessageQueue(std::unique_ptr<SocketServer> ss, bool init_queue);
// NOTE: SUBCLASSES OF MessageQueue THAT OVERRIDE Clear MUST CALL
// DoDestroy() IN THEIR DESTRUCTORS! This is required to avoid a data race
// between the destructor modifying the vtable, and the MessageQueueManager
// calling Clear on the object from a different thread.
virtual ~MessageQueue();
SocketServer* socketserver();
// Note: The behavior of MessageQueue has changed. When a MQ is stopped,
// futher Posts and Sends will fail. However, any pending Sends and *ready*
// Posts (as opposed to unexpired delayed Posts) will be delivered before
// Get (or Peek) returns false. By guaranteeing delivery of those messages,
// we eliminate the race condition when an MessageHandler and MessageQueue
// may be destroyed independently of each other.
virtual void Quit();
virtual bool IsQuitting();
virtual void Restart();
// Not all message queues actually process messages (such as SignalThread).
// In those cases, it's important to know, before posting, that it won't be
// Processed. Normally, this would be true until IsQuitting() is true.
virtual bool IsProcessingMessagesForTesting();
// Get() will process I/O until:
// 1) A message is available (returns true)
// 2) cmsWait seconds have elapsed (returns false)
// 3) Stop() is called (returns false)
virtual bool Get(Message* pmsg,
int cmsWait = kForever,
bool process_io = true);
virtual bool Peek(Message* pmsg, int cmsWait = 0);
virtual void Post(const Location& posted_from,
MessageHandler* phandler,
uint32_t id = 0,
MessageData* pdata = nullptr,
bool time_sensitive = false);
virtual void PostDelayed(const Location& posted_from,
int cmsDelay,
MessageHandler* phandler,
uint32_t id = 0,
MessageData* pdata = nullptr);
virtual void PostAt(const Location& posted_from,
int64_t tstamp,
MessageHandler* phandler,
uint32_t id = 0,
MessageData* pdata = nullptr);
// TODO(honghaiz): Remove this when all the dependencies are removed.
virtual void PostAt(const Location& posted_from,
uint32_t tstamp,
MessageHandler* phandler,
uint32_t id = 0,
MessageData* pdata = nullptr);
virtual void Clear(MessageHandler* phandler,
uint32_t id = MQID_ANY,
MessageList* removed = nullptr);
virtual void Dispatch(Message* pmsg);
virtual void ReceiveSends();
// Amount of time until the next message can be retrieved
virtual int GetDelay();
bool empty() const { return size() == 0u; }
size_t size() const {
CritScope cs(&crit_); // msgq_.size() is not thread safe.
return msgq_.size() + dmsgq_.size() + (fPeekKeep_ ? 1u : 0u);
}
// Internally posts a message which causes the doomed object to be deleted
template <class T>
void Dispose(T* doomed) {
if (doomed) {
Post(RTC_FROM_HERE, nullptr, MQID_DISPOSE, new DisposeData<T>(doomed));
}
}
// When this signal is sent out, any references to this queue should
// no longer be used.
sigslot::signal0<> SignalQueueDestroyed;
protected:
class PriorityQueue : public std::priority_queue<DelayedMessage> {
public:
container_type& container() { return c; }
void reheap() { make_heap(c.begin(), c.end(), comp); }
};
void DoDelayPost(const Location& posted_from,
int64_t cmsDelay,
int64_t tstamp,
MessageHandler* phandler,
uint32_t id,
MessageData* pdata);
// Perform initialization, subclasses must call this from their constructor
// if false was passed as init_queue to the MessageQueue constructor.
void DoInit();
// Does not take any lock. Must be called either while holding crit_, or by
// the destructor (by definition, the latter has exclusive access).
void ClearInternal(MessageHandler* phandler,
uint32_t id,
MessageList* removed) RTC_EXCLUSIVE_LOCKS_REQUIRED(&crit_);
// Perform cleanup; subclasses must call this from the destructor,
// and are not expected to actually hold the lock.
void DoDestroy() RTC_EXCLUSIVE_LOCKS_REQUIRED(&crit_);
void WakeUpSocketServer();
bool fPeekKeep_;
Message msgPeek_;
MessageList msgq_ RTC_GUARDED_BY(crit_);
PriorityQueue dmsgq_ RTC_GUARDED_BY(crit_);
uint32_t dmsgq_next_num_ RTC_GUARDED_BY(crit_);
CriticalSection crit_;
bool fInitialized_;
bool fDestroyed_;
private:
volatile int stop_;
// The SocketServer might not be owned by MessageQueue.
SocketServer* const ss_;
// Used if SocketServer ownership lies with |this|.
std::unique_ptr<SocketServer> own_ss_;
RTC_DISALLOW_IMPLICIT_CONSTRUCTORS(MessageQueue);
};
} // namespace rtc
#endif // RTC_BASE_MESSAGE_QUEUE_H_ #endif // RTC_BASE_MESSAGE_QUEUE_H_

View File

@ -8,7 +8,7 @@
* be found in the AUTHORS file in the root of the source tree. * be found in the AUTHORS file in the root of the source tree.
*/ */
#include "rtc_base/message_queue.h" #include "rtc_base/thread.h"
#include <functional> #include <functional>
@ -29,14 +29,14 @@ namespace {
using ::webrtc::ToQueuedTask; using ::webrtc::ToQueuedTask;
class MessageQueueTest : public ::testing::Test, public MessageQueue { class MessageQueueTest : public ::testing::Test, public Thread {
public: public:
MessageQueueTest() : MessageQueue(SocketServer::CreateDefault(), true) {} MessageQueueTest() : Thread(SocketServer::CreateDefault(), true) {}
bool IsLocked_Worker() { bool IsLocked_Worker() {
if (!crit_.TryEnter()) { if (!CritForTest()->TryEnter()) {
return true; return true;
} }
crit_.Leave(); CritForTest()->Leave();
return false; return false;
} }
bool IsLocked() { bool IsLocked() {
@ -61,8 +61,7 @@ struct DeletedLockChecker {
bool* deleted; bool* deleted;
}; };
static void DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder( static void DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder(Thread* q) {
MessageQueue* q) {
EXPECT_TRUE(q != nullptr); EXPECT_TRUE(q != nullptr);
int64_t now = TimeMillis(); int64_t now = TimeMillis();
q->PostAt(RTC_FROM_HERE, now, nullptr, 3); q->PostAt(RTC_FROM_HERE, now, nullptr, 3);
@ -83,11 +82,11 @@ static void DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder(
TEST_F(MessageQueueTest, TEST_F(MessageQueueTest,
DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder) { DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder) {
MessageQueue q(SocketServer::CreateDefault(), true); Thread q(SocketServer::CreateDefault(), true);
DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder(&q); DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder(&q);
NullSocketServer nullss; NullSocketServer nullss;
MessageQueue q_nullss(&nullss, true); Thread q_nullss(&nullss, true);
DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder(&q_nullss); DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder(&q_nullss);
} }
@ -127,7 +126,7 @@ TEST_F(MessageQueueTest, DiposeHandlerWithPostedMessagePending) {
// Ensure that ProcessAllMessageQueues does its essential function; process // Ensure that ProcessAllMessageQueues does its essential function; process
// all messages (both delayed and non delayed) up until the current time, on // all messages (both delayed and non delayed) up until the current time, on
// all registered message queues. // all registered message queues.
TEST(MessageQueueManager, ProcessAllMessageQueues) { TEST(ThreadManager, ProcessAllMessageQueues) {
Event entered_process_all_message_queues(true, false); Event entered_process_all_message_queues(true, false);
auto a = Thread::CreateWithSocketServer(); auto a = Thread::CreateWithSocketServer();
auto b = Thread::CreateWithSocketServer(); auto b = Thread::CreateWithSocketServer();
@ -155,21 +154,21 @@ TEST(MessageQueueManager, ProcessAllMessageQueues) {
b->PostDelayedTask(ToQueuedTask(incrementer), 0); b->PostDelayedTask(ToQueuedTask(incrementer), 0);
rtc::Thread::Current()->PostTask(ToQueuedTask(event_signaler)); rtc::Thread::Current()->PostTask(ToQueuedTask(event_signaler));
MessageQueueManager::ProcessAllMessageQueuesForTesting(); ThreadManager::ProcessAllMessageQueuesForTesting();
EXPECT_EQ(4, AtomicOps::AcquireLoad(&messages_processed)); EXPECT_EQ(4, AtomicOps::AcquireLoad(&messages_processed));
} }
// Test that ProcessAllMessageQueues doesn't hang if a thread is quitting. // Test that ProcessAllMessageQueues doesn't hang if a thread is quitting.
TEST(MessageQueueManager, ProcessAllMessageQueuesWithQuittingThread) { TEST(ThreadManager, ProcessAllMessageQueuesWithQuittingThread) {
auto t = Thread::CreateWithSocketServer(); auto t = Thread::CreateWithSocketServer();
t->Start(); t->Start();
t->Quit(); t->Quit();
MessageQueueManager::ProcessAllMessageQueuesForTesting(); ThreadManager::ProcessAllMessageQueuesForTesting();
} }
// Test that ProcessAllMessageQueues doesn't hang if a queue clears its // Test that ProcessAllMessageQueues doesn't hang if a queue clears its
// messages. // messages.
TEST(MessageQueueManager, ProcessAllMessageQueuesWithClearedQueue) { TEST(ThreadManager, ProcessAllMessageQueuesWithClearedQueue) {
Event entered_process_all_message_queues(true, false); Event entered_process_all_message_queues(true, false);
auto t = Thread::CreateWithSocketServer(); auto t = Thread::CreateWithSocketServer();
t->Start(); t->Start();
@ -189,7 +188,7 @@ TEST(MessageQueueManager, ProcessAllMessageQueuesWithClearedQueue) {
// Post messages (both delayed and non delayed) to both threads. // Post messages (both delayed and non delayed) to both threads.
t->PostTask(RTC_FROM_HERE, clearer); t->PostTask(RTC_FROM_HERE, clearer);
rtc::Thread::Current()->PostTask(RTC_FROM_HERE, event_signaler); rtc::Thread::Current()->PostTask(RTC_FROM_HERE, event_signaler);
MessageQueueManager::ProcessAllMessageQueuesForTesting(); ThreadManager::ProcessAllMessageQueuesForTesting();
} }
class RefCountedHandler : public MessageHandler, public rtc::RefCountInterface { class RefCountedHandler : public MessageHandler, public rtc::RefCountInterface {
@ -202,7 +201,7 @@ class EmptyHandler : public MessageHandler {
void OnMessage(Message* msg) override {} void OnMessage(Message* msg) override {}
}; };
TEST(MessageQueueManager, ClearReentrant) { TEST(ThreadManager, ClearReentrant) {
std::unique_ptr<Thread> t(Thread::Create()); std::unique_ptr<Thread> t(Thread::Create());
EmptyHandler handler; EmptyHandler handler;
RefCountedHandler* inner_handler( RefCountedHandler* inner_handler(

View File

@ -28,6 +28,8 @@
#include <utility> #include <utility>
#include "absl/algorithm/container.h"
#include "rtc_base/atomic_ops.h"
#include "rtc_base/checks.h" #include "rtc_base/checks.h"
#include "rtc_base/critical_section.h" #include "rtc_base/critical_section.h"
#include "rtc_base/logging.h" #include "rtc_base/logging.h"
@ -65,6 +67,9 @@ class ScopedAutoReleasePool {
namespace rtc { namespace rtc {
namespace { namespace {
const int kMaxMsgLatency = 150; // 150 ms
const int kSlowDispatchLoggingThreshold = 50; // 50 ms
class MessageHandlerWithTask final : public MessageHandler { class MessageHandlerWithTask final : public MessageHandler {
public: public:
MessageHandlerWithTask() = default; MessageHandlerWithTask() = default;
@ -80,6 +85,27 @@ class MessageHandlerWithTask final : public MessageHandler {
RTC_DISALLOW_COPY_AND_ASSIGN(MessageHandlerWithTask); RTC_DISALLOW_COPY_AND_ASSIGN(MessageHandlerWithTask);
}; };
class RTC_SCOPED_LOCKABLE MarkProcessingCritScope {
public:
MarkProcessingCritScope(const CriticalSection* cs, size_t* processing)
RTC_EXCLUSIVE_LOCK_FUNCTION(cs)
: cs_(cs), processing_(processing) {
cs_->Enter();
*processing_ += 1;
}
~MarkProcessingCritScope() RTC_UNLOCK_FUNCTION() {
*processing_ -= 1;
cs_->Leave();
}
private:
const CriticalSection* const cs_;
size_t* processing_;
RTC_DISALLOW_COPY_AND_ASSIGN(MarkProcessingCritScope);
};
} // namespace } // namespace
ThreadManager* ThreadManager::Instance() { ThreadManager* ThreadManager::Instance() {
@ -92,6 +118,97 @@ ThreadManager::~ThreadManager() {
RTC_NOTREACHED() << "ThreadManager should never be destructed."; RTC_NOTREACHED() << "ThreadManager should never be destructed.";
} }
// static
void ThreadManager::Add(Thread* message_queue) {
return Instance()->AddInternal(message_queue);
}
void ThreadManager::AddInternal(Thread* message_queue) {
CritScope cs(&crit_);
// Prevent changes while the list of message queues is processed.
RTC_DCHECK_EQ(processing_, 0);
message_queues_.push_back(message_queue);
}
// static
void ThreadManager::Remove(Thread* message_queue) {
return Instance()->RemoveInternal(message_queue);
}
void ThreadManager::RemoveInternal(Thread* message_queue) {
{
CritScope cs(&crit_);
// Prevent changes while the list of message queues is processed.
RTC_DCHECK_EQ(processing_, 0);
std::vector<Thread*>::iterator iter;
iter = absl::c_find(message_queues_, message_queue);
if (iter != message_queues_.end()) {
message_queues_.erase(iter);
}
}
}
// static
void ThreadManager::Clear(MessageHandler* handler) {
return Instance()->ClearInternal(handler);
}
void ThreadManager::ClearInternal(MessageHandler* handler) {
// Deleted objects may cause re-entrant calls to ClearInternal. This is
// allowed as the list of message queues does not change while queues are
// cleared.
MarkProcessingCritScope cs(&crit_, &processing_);
for (Thread* queue : message_queues_) {
queue->Clear(handler);
}
}
// static
void ThreadManager::ProcessAllMessageQueuesForTesting() {
return Instance()->ProcessAllMessageQueuesInternal();
}
void ThreadManager::ProcessAllMessageQueuesInternal() {
// This works by posting a delayed message at the current time and waiting
// for it to be dispatched on all queues, which will ensure that all messages
// that came before it were also dispatched.
volatile int queues_not_done = 0;
// This class is used so that whether the posted message is processed, or the
// message queue is simply cleared, queues_not_done gets decremented.
class ScopedIncrement : public MessageData {
public:
ScopedIncrement(volatile int* value) : value_(value) {
AtomicOps::Increment(value_);
}
~ScopedIncrement() override { AtomicOps::Decrement(value_); }
private:
volatile int* value_;
};
{
MarkProcessingCritScope cs(&crit_, &processing_);
for (Thread* queue : message_queues_) {
if (!queue->IsProcessingMessagesForTesting()) {
// If the queue is not processing messages, it can
// be ignored. If we tried to post a message to it, it would be dropped
// or ignored.
continue;
}
queue->PostDelayed(RTC_FROM_HERE, 0, nullptr, MQID_DISPOSE,
new ScopedIncrement(&queues_not_done));
}
}
rtc::Thread* current = rtc::Thread::Current();
// Note: One of the message queues may have been on this thread, which is
// why we can't synchronously wait for queues_not_done to go to 0; we need
// to process messages as well.
while (AtomicOps::AcquireLoad(&queues_not_done) > 0) {
if (current) {
current->ProcessMessages(0);
}
}
}
// static // static
Thread* Thread::Current() { Thread* Thread::Current() {
ThreadManager* manager = ThreadManager::Instance(); ThreadManager* manager = ThreadManager::Instance();
@ -180,8 +297,14 @@ Thread::Thread(std::unique_ptr<SocketServer> ss)
: Thread(std::move(ss), /*do_init=*/true) {} : Thread(std::move(ss), /*do_init=*/true) {}
Thread::Thread(SocketServer* ss, bool do_init) Thread::Thread(SocketServer* ss, bool do_init)
: MessageQueue(ss, /*do_init=*/false) { : fPeekKeep_(false),
socketserver()->SetMessageQueue(this); dmsgq_next_num_(0),
fInitialized_(false),
fDestroyed_(false),
stop_(0),
ss_(ss) {
RTC_DCHECK(ss);
ss_->SetMessageQueue(this);
SetName("Thread", this); // default name SetName("Thread", this); // default name
if (do_init) { if (do_init) {
DoInit(); DoInit();
@ -189,12 +312,8 @@ Thread::Thread(SocketServer* ss, bool do_init)
} }
Thread::Thread(std::unique_ptr<SocketServer> ss, bool do_init) Thread::Thread(std::unique_ptr<SocketServer> ss, bool do_init)
: MessageQueue(std::move(ss), false) { : Thread(ss.get(), do_init) {
socketserver()->SetMessageQueue(this); own_ss_ = std::move(ss);
SetName("Thread", this); // default name
if (do_init) {
DoInit();
}
} }
Thread::~Thread() { Thread::~Thread() {
@ -202,6 +321,337 @@ Thread::~Thread() {
DoDestroy(); DoDestroy();
} }
void Thread::DoInit() {
if (fInitialized_) {
return;
}
fInitialized_ = true;
ThreadManager::Add(this);
}
void Thread::DoDestroy() {
if (fDestroyed_) {
return;
}
fDestroyed_ = true;
// The signal is done from here to ensure
// that it always gets called when the queue
// is going away.
SignalQueueDestroyed();
ThreadManager::Remove(this);
ClearInternal(nullptr, MQID_ANY, nullptr);
if (ss_) {
ss_->SetMessageQueue(nullptr);
}
}
SocketServer* Thread::socketserver() {
return ss_;
}
void Thread::WakeUpSocketServer() {
ss_->WakeUp();
}
void Thread::Quit() {
AtomicOps::ReleaseStore(&stop_, 1);
WakeUpSocketServer();
}
bool Thread::IsQuitting() {
return AtomicOps::AcquireLoad(&stop_) != 0;
}
void Thread::Restart() {
AtomicOps::ReleaseStore(&stop_, 0);
}
bool Thread::Peek(Message* pmsg, int cmsWait) {
if (fPeekKeep_) {
*pmsg = msgPeek_;
return true;
}
if (!Get(pmsg, cmsWait))
return false;
msgPeek_ = *pmsg;
fPeekKeep_ = true;
return true;
}
bool Thread::Get(Message* pmsg, int cmsWait, bool process_io) {
// Return and clear peek if present
// Always return the peek if it exists so there is Peek/Get symmetry
if (fPeekKeep_) {
*pmsg = msgPeek_;
fPeekKeep_ = false;
return true;
}
// Get w/wait + timer scan / dispatch + socket / event multiplexer dispatch
int64_t cmsTotal = cmsWait;
int64_t cmsElapsed = 0;
int64_t msStart = TimeMillis();
int64_t msCurrent = msStart;
while (true) {
// Check for sent messages
ReceiveSends();
// Check for posted events
int64_t cmsDelayNext = kForever;
bool first_pass = true;
while (true) {
// All queue operations need to be locked, but nothing else in this loop
// (specifically handling disposed message) can happen inside the crit.
// Otherwise, disposed MessageHandlers will cause deadlocks.
{
CritScope cs(&crit_);
// On the first pass, check for delayed messages that have been
// triggered and calculate the next trigger time.
if (first_pass) {
first_pass = false;
while (!dmsgq_.empty()) {
if (msCurrent < dmsgq_.top().msTrigger_) {
cmsDelayNext = TimeDiff(dmsgq_.top().msTrigger_, msCurrent);
break;
}
msgq_.push_back(dmsgq_.top().msg_);
dmsgq_.pop();
}
}
// Pull a message off the message queue, if available.
if (msgq_.empty()) {
break;
} else {
*pmsg = msgq_.front();
msgq_.pop_front();
}
} // crit_ is released here.
// Log a warning for time-sensitive messages that we're late to deliver.
if (pmsg->ts_sensitive) {
int64_t delay = TimeDiff(msCurrent, pmsg->ts_sensitive);
if (delay > 0) {
RTC_LOG_F(LS_WARNING)
<< "id: " << pmsg->message_id
<< " delay: " << (delay + kMaxMsgLatency) << "ms";
}
}
// If this was a dispose message, delete it and skip it.
if (MQID_DISPOSE == pmsg->message_id) {
RTC_DCHECK(nullptr == pmsg->phandler);
delete pmsg->pdata;
*pmsg = Message();
continue;
}
return true;
}
if (IsQuitting())
break;
// Which is shorter, the delay wait or the asked wait?
int64_t cmsNext;
if (cmsWait == kForever) {
cmsNext = cmsDelayNext;
} else {
cmsNext = std::max<int64_t>(0, cmsTotal - cmsElapsed);
if ((cmsDelayNext != kForever) && (cmsDelayNext < cmsNext))
cmsNext = cmsDelayNext;
}
{
// Wait and multiplex in the meantime
if (!ss_->Wait(static_cast<int>(cmsNext), process_io))
return false;
}
// If the specified timeout expired, return
msCurrent = TimeMillis();
cmsElapsed = TimeDiff(msCurrent, msStart);
if (cmsWait != kForever) {
if (cmsElapsed >= cmsWait)
return false;
}
}
return false;
}
void Thread::Post(const Location& posted_from,
MessageHandler* phandler,
uint32_t id,
MessageData* pdata,
bool time_sensitive) {
if (IsQuitting()) {
delete pdata;
return;
}
// Keep thread safe
// Add the message to the end of the queue
// Signal for the multiplexer to return
{
CritScope cs(&crit_);
Message msg;
msg.posted_from = posted_from;
msg.phandler = phandler;
msg.message_id = id;
msg.pdata = pdata;
if (time_sensitive) {
msg.ts_sensitive = TimeMillis() + kMaxMsgLatency;
}
msgq_.push_back(msg);
}
WakeUpSocketServer();
}
void Thread::PostDelayed(const Location& posted_from,
int cmsDelay,
MessageHandler* phandler,
uint32_t id,
MessageData* pdata) {
return DoDelayPost(posted_from, cmsDelay, TimeAfter(cmsDelay), phandler, id,
pdata);
}
void Thread::PostAt(const Location& posted_from,
uint32_t tstamp,
MessageHandler* phandler,
uint32_t id,
MessageData* pdata) {
// This should work even if it is used (unexpectedly).
int64_t delay = static_cast<uint32_t>(TimeMillis()) - tstamp;
return DoDelayPost(posted_from, delay, tstamp, phandler, id, pdata);
}
void Thread::PostAt(const Location& posted_from,
int64_t tstamp,
MessageHandler* phandler,
uint32_t id,
MessageData* pdata) {
return DoDelayPost(posted_from, TimeUntil(tstamp), tstamp, phandler, id,
pdata);
}
void Thread::DoDelayPost(const Location& posted_from,
int64_t cmsDelay,
int64_t tstamp,
MessageHandler* phandler,
uint32_t id,
MessageData* pdata) {
if (IsQuitting()) {
delete pdata;
return;
}
// Keep thread safe
// Add to the priority queue. Gets sorted soonest first.
// Signal for the multiplexer to return.
{
CritScope cs(&crit_);
Message msg;
msg.posted_from = posted_from;
msg.phandler = phandler;
msg.message_id = id;
msg.pdata = pdata;
DelayedMessage dmsg(cmsDelay, tstamp, dmsgq_next_num_, msg);
dmsgq_.push(dmsg);
// If this message queue processes 1 message every millisecond for 50 days,
// we will wrap this number. Even then, only messages with identical times
// will be misordered, and then only briefly. This is probably ok.
++dmsgq_next_num_;
RTC_DCHECK_NE(0, dmsgq_next_num_);
}
WakeUpSocketServer();
}
int Thread::GetDelay() {
CritScope cs(&crit_);
if (!msgq_.empty())
return 0;
if (!dmsgq_.empty()) {
int delay = TimeUntil(dmsgq_.top().msTrigger_);
if (delay < 0)
delay = 0;
return delay;
}
return kForever;
}
void Thread::ClearInternal(MessageHandler* phandler,
uint32_t id,
MessageList* removed) {
// Remove messages with phandler
if (fPeekKeep_ && msgPeek_.Match(phandler, id)) {
if (removed) {
removed->push_back(msgPeek_);
} else {
delete msgPeek_.pdata;
}
fPeekKeep_ = false;
}
// Remove from ordered message queue
for (MessageList::iterator it = msgq_.begin(); it != msgq_.end();) {
if (it->Match(phandler, id)) {
if (removed) {
removed->push_back(*it);
} else {
delete it->pdata;
}
it = msgq_.erase(it);
} else {
++it;
}
}
// Remove from priority queue. Not directly iterable, so use this approach
PriorityQueue::container_type::iterator new_end = dmsgq_.container().begin();
for (PriorityQueue::container_type::iterator it = new_end;
it != dmsgq_.container().end(); ++it) {
if (it->msg_.Match(phandler, id)) {
if (removed) {
removed->push_back(it->msg_);
} else {
delete it->msg_.pdata;
}
} else {
*new_end++ = *it;
}
}
dmsgq_.container().erase(new_end, dmsgq_.container().end());
dmsgq_.reheap();
}
void Thread::Dispatch(Message* pmsg) {
TRACE_EVENT2("webrtc", "Thread::Dispatch", "src_file",
pmsg->posted_from.file_name(), "src_func",
pmsg->posted_from.function_name());
int64_t start_time = TimeMillis();
pmsg->phandler->OnMessage(pmsg);
int64_t end_time = TimeMillis();
int64_t diff = TimeDiff(end_time, start_time);
if (diff >= kSlowDispatchLoggingThreshold) {
RTC_LOG(LS_INFO) << "Message took " << diff
<< "ms to dispatch. Posted from: "
<< pmsg->posted_from.ToString();
}
}
bool Thread::IsCurrent() const { bool Thread::IsCurrent() const {
return ThreadManager::Instance()->CurrentThread() == this; return ThreadManager::Instance()->CurrentThread() == this;
} }
@ -379,7 +829,7 @@ bool Thread::IsOwned() {
} }
void Thread::Stop() { void Thread::Stop() {
MessageQueue::Quit(); Thread::Quit();
Join(); Join();
} }
@ -436,7 +886,7 @@ void Thread::Send(const Location& posted_from,
crit_.Leave(); crit_.Leave();
// Our Wait loop above may have consumed some WakeUp events for this // Our Wait loop above may have consumed some WakeUp events for this
// MessageQueue, that weren't relevant to this Send. Losing these WakeUps can // Thread, that weren't relevant to this Send. Losing these WakeUps can
// cause problems for some SocketServers. // cause problems for some SocketServers.
// //
// Concrete example: // Concrete example:
@ -510,7 +960,7 @@ void Thread::QueuedTaskHandler::OnMessage(Message* msg) {
RTC_DCHECK(msg); RTC_DCHECK(msg);
auto* data = static_cast<ScopedMessageData<webrtc::QueuedTask>*>(msg->pdata); auto* data = static_cast<ScopedMessageData<webrtc::QueuedTask>*>(msg->pdata);
std::unique_ptr<webrtc::QueuedTask> task = std::move(data->data()); std::unique_ptr<webrtc::QueuedTask> task = std::move(data->data());
// MessageQueue expects handler to own Message::pdata when OnMessage is called // Thread expects handler to own Message::pdata when OnMessage is called
// Since MessageData is no longer needed, delete it. // Since MessageData is no longer needed, delete it.
delete data; delete data;
@ -542,8 +992,7 @@ void Thread::Delete() {
} }
bool Thread::IsProcessingMessagesForTesting() { bool Thread::IsProcessingMessagesForTesting() {
return (owned_ || IsCurrent()) && return (owned_ || IsCurrent()) && !IsQuitting();
MessageQueue::IsProcessingMessagesForTesting();
} }
void Thread::Clear(MessageHandler* phandler, void Thread::Clear(MessageHandler* phandler,
@ -642,7 +1091,7 @@ MessageHandler* Thread::GetPostTaskMessageHandler() {
AutoThread::AutoThread() AutoThread::AutoThread()
: Thread(SocketServer::CreateDefault(), /*do_init=*/false) { : Thread(SocketServer::CreateDefault(), /*do_init=*/false) {
if (!ThreadManager::Instance()->CurrentThread()) { if (!ThreadManager::Instance()->CurrentThread()) {
// DoInit registers with MessageQueueManager. Do that only if we intend to // DoInit registers with ThreadManager. Do that only if we intend to
// be rtc::Thread::Current(), otherwise ProcessAllMessageQueuesInternal will // be rtc::Thread::Current(), otherwise ProcessAllMessageQueuesInternal will
// post a message to a queue that no running thread is serving. // post a message to a queue that no running thread is serving.
DoInit(); DoInit();
@ -667,7 +1116,7 @@ AutoSocketServerThread::AutoSocketServerThread(SocketServer* ss)
rtc::ThreadManager::Instance()->SetCurrentThread(nullptr); rtc::ThreadManager::Instance()->SetCurrentThread(nullptr);
rtc::ThreadManager::Instance()->SetCurrentThread(this); rtc::ThreadManager::Instance()->SetCurrentThread(this);
if (old_thread_) { if (old_thread_) {
MessageQueueManager::Remove(old_thread_); ThreadManager::Remove(old_thread_);
} }
} }
@ -679,7 +1128,7 @@ AutoSocketServerThread::~AutoSocketServerThread() {
// cricket::Connection::Destroy. // cricket::Connection::Destroy.
ProcessMessages(0); ProcessMessages(0);
// Stop and destroy the thread before clearing it as the current thread. // Stop and destroy the thread before clearing it as the current thread.
// Sometimes there are messages left in the MessageQueue that will be // Sometimes there are messages left in the Thread that will be
// destroyed by DoDestroy, and sometimes the destructors of the message and/or // destroyed by DoDestroy, and sometimes the destructors of the message and/or
// its contents rely on this thread still being set as the current thread. // its contents rely on this thread still being set as the current thread.
Stop(); Stop();
@ -687,7 +1136,7 @@ AutoSocketServerThread::~AutoSocketServerThread() {
rtc::ThreadManager::Instance()->SetCurrentThread(nullptr); rtc::ThreadManager::Instance()->SetCurrentThread(nullptr);
rtc::ThreadManager::Instance()->SetCurrentThread(old_thread_); rtc::ThreadManager::Instance()->SetCurrentThread(old_thread_);
if (old_thread_) { if (old_thread_) {
MessageQueueManager::Add(old_thread_); ThreadManager::Add(old_thread_);
} }
} }

View File

@ -15,8 +15,10 @@
#include <list> #include <list>
#include <memory> #include <memory>
#include <queue>
#include <string> #include <string>
#include <type_traits> #include <type_traits>
#include <vector>
#if defined(WEBRTC_POSIX) #if defined(WEBRTC_POSIX)
#include <pthread.h> #include <pthread.h>
@ -25,13 +27,14 @@
#include "api/task_queue/queued_task.h" #include "api/task_queue/queued_task.h"
#include "api/task_queue/task_queue_base.h" #include "api/task_queue/task_queue_base.h"
#include "rtc_base/constructor_magic.h" #include "rtc_base/constructor_magic.h"
#include "rtc_base/critical_section.h"
#include "rtc_base/location.h" #include "rtc_base/location.h"
#include "rtc_base/message_handler.h" #include "rtc_base/message_handler.h"
#include "rtc_base/message_queue.h"
#include "rtc_base/platform_thread_types.h" #include "rtc_base/platform_thread_types.h"
#include "rtc_base/socket_server.h" #include "rtc_base/socket_server.h"
#include "rtc_base/system/rtc_export.h" #include "rtc_base/system/rtc_export.h"
#include "rtc_base/thread_annotations.h" #include "rtc_base/thread_annotations.h"
#include "rtc_base/thread_message.h"
#if defined(WEBRTC_WIN) #if defined(WEBRTC_WIN)
#include "rtc_base/win32.h" #include "rtc_base/win32.h"
@ -73,6 +76,18 @@ class RTC_EXPORT ThreadManager {
// Singleton, constructor and destructor are private. // Singleton, constructor and destructor are private.
static ThreadManager* Instance(); static ThreadManager* Instance();
static void Add(Thread* message_queue);
static void Remove(Thread* message_queue);
static void Clear(MessageHandler* handler);
// TODO(nisse): Delete alias, as soon as downstream code is updated.
static void ProcessAllMessageQueues() { ProcessAllMessageQueuesForTesting(); }
// For testing purposes, for use with a simulated clock.
// Ensures that all message queues have processed delayed messages
// up until the current point in time.
static void ProcessAllMessageQueuesForTesting();
Thread* CurrentThread(); Thread* CurrentThread();
void SetCurrentThread(Thread* thread); void SetCurrentThread(Thread* thread);
@ -98,6 +113,20 @@ class RTC_EXPORT ThreadManager {
ThreadManager(); ThreadManager();
~ThreadManager(); ~ThreadManager();
void AddInternal(Thread* message_queue);
void RemoveInternal(Thread* message_queue);
void ClearInternal(MessageHandler* handler);
void ProcessAllMessageQueuesInternal();
// This list contains all live Threads.
std::vector<Thread*> message_queues_ RTC_GUARDED_BY(crit_);
// Methods that don't modify the list of message queues may be called in a
// re-entrant fashion. "processing_" keeps track of the depth of re-entrant
// calls.
CriticalSection crit_;
size_t processing_ RTC_GUARDED_BY(crit_) = 0;
#if defined(WEBRTC_POSIX) #if defined(WEBRTC_POSIX)
pthread_key_t key_; pthread_key_t key_;
#endif #endif
@ -121,11 +150,18 @@ struct _SendMessage {
// WARNING! SUBCLASSES MUST CALL Stop() IN THEIR DESTRUCTORS! See ~Thread(). // WARNING! SUBCLASSES MUST CALL Stop() IN THEIR DESTRUCTORS! See ~Thread().
class RTC_LOCKABLE RTC_EXPORT Thread : public MessageQueue, class RTC_LOCKABLE RTC_EXPORT Thread : public webrtc::TaskQueueBase {
public webrtc::TaskQueueBase {
public: public:
static const int kForever = -1;
// Create a new Thread and optionally assign it to the passed
// SocketServer. Subclasses that override Clear should pass false for
// init_queue and call DoInit() from their constructor to prevent races
// with the ThreadManager using the object while the vtable is still
// being created.
explicit Thread(SocketServer* ss); explicit Thread(SocketServer* ss);
explicit Thread(std::unique_ptr<SocketServer> ss); explicit Thread(std::unique_ptr<SocketServer> ss);
// Constructors meant for subclasses; they should call DoInit themselves and // Constructors meant for subclasses; they should call DoInit themselves and
// pass false for |do_init|, so that DoInit is called only on the fully // pass false for |do_init|, so that DoInit is called only on the fully
// instantiated class, which avoids a vptr data race. // instantiated class, which avoids a vptr data race.
@ -136,6 +172,11 @@ class RTC_LOCKABLE RTC_EXPORT Thread : public MessageQueue,
// guarantee Stop() is explicitly called before the subclass is destroyed). // guarantee Stop() is explicitly called before the subclass is destroyed).
// This is required to avoid a data race between the destructor modifying the // This is required to avoid a data race between the destructor modifying the
// vtable, and the Thread::PreRun calling the virtual method Run(). // vtable, and the Thread::PreRun calling the virtual method Run().
// NOTE: SUBCLASSES OF Thread THAT OVERRIDE Clear MUST CALL
// DoDestroy() IN THEIR DESTRUCTORS! This is required to avoid a data race
// between the destructor modifying the vtable, and the ThreadManager
// calling Clear on the object from a different thread.
~Thread() override; ~Thread() override;
static std::unique_ptr<Thread> CreateWithSocketServer(); static std::unique_ptr<Thread> CreateWithSocketServer();
@ -159,6 +200,78 @@ class RTC_LOCKABLE RTC_EXPORT Thread : public MessageQueue,
const bool previous_state_; const bool previous_state_;
}; };
SocketServer* socketserver();
// Note: The behavior of Thread has changed. When a thread is stopped,
// futher Posts and Sends will fail. However, any pending Sends and *ready*
// Posts (as opposed to unexpired delayed Posts) will be delivered before
// Get (or Peek) returns false. By guaranteeing delivery of those messages,
// we eliminate the race condition when an MessageHandler and Thread
// may be destroyed independently of each other.
virtual void Quit();
virtual bool IsQuitting();
virtual void Restart();
// Not all message queues actually process messages (such as SignalThread).
// In those cases, it's important to know, before posting, that it won't be
// Processed. Normally, this would be true until IsQuitting() is true.
virtual bool IsProcessingMessagesForTesting();
// Get() will process I/O until:
// 1) A message is available (returns true)
// 2) cmsWait seconds have elapsed (returns false)
// 3) Stop() is called (returns false)
virtual bool Get(Message* pmsg,
int cmsWait = kForever,
bool process_io = true);
virtual bool Peek(Message* pmsg, int cmsWait = 0);
virtual void Post(const Location& posted_from,
MessageHandler* phandler,
uint32_t id = 0,
MessageData* pdata = nullptr,
bool time_sensitive = false);
virtual void PostDelayed(const Location& posted_from,
int cmsDelay,
MessageHandler* phandler,
uint32_t id = 0,
MessageData* pdata = nullptr);
virtual void PostAt(const Location& posted_from,
int64_t tstamp,
MessageHandler* phandler,
uint32_t id = 0,
MessageData* pdata = nullptr);
// TODO(honghaiz): Remove this when all the dependencies are removed.
virtual void PostAt(const Location& posted_from,
uint32_t tstamp,
MessageHandler* phandler,
uint32_t id = 0,
MessageData* pdata = nullptr);
virtual void Clear(MessageHandler* phandler,
uint32_t id = MQID_ANY,
MessageList* removed = nullptr);
virtual void Dispatch(Message* pmsg);
virtual void ReceiveSends();
// Amount of time until the next message can be retrieved
virtual int GetDelay();
bool empty() const { return size() == 0u; }
size_t size() const {
CritScope cs(&crit_); // msgq_.size() is not thread safe.
return msgq_.size() + dmsgq_.size() + (fPeekKeep_ ? 1u : 0u);
}
// Internally posts a message which causes the doomed object to be deleted
template <class T>
void Dispose(T* doomed) {
if (doomed) {
Post(RTC_FROM_HERE, nullptr, MQID_DISPOSE, new DisposeData<T>(doomed));
}
}
// When this signal is sent out, any references to this queue should
// no longer be used.
sigslot::signal0<> SignalQueueDestroyed;
bool IsCurrent() const; bool IsCurrent() const;
// Sleeps the calling thread for the specified number of milliseconds, during // Sleeps the calling thread for the specified number of milliseconds, during
@ -176,7 +289,7 @@ class RTC_LOCKABLE RTC_EXPORT Thread : public MessageQueue,
// Tells the thread to stop and waits until it is joined. // Tells the thread to stop and waits until it is joined.
// Never call Stop on the current thread. Instead use the inherited Quit // Never call Stop on the current thread. Instead use the inherited Quit
// function which will exit the base MessageQueue without terminating the // function which will exit the base Thread without terminating the
// underlying OS thread. // underlying OS thread.
virtual void Stop(); virtual void Stop();
@ -272,13 +385,6 @@ class RTC_LOCKABLE RTC_EXPORT Thread : public MessageQueue,
uint32_t milliseconds) override; uint32_t milliseconds) override;
void Delete() override; void Delete() override;
// From MessageQueue
bool IsProcessingMessagesForTesting() override;
void Clear(MessageHandler* phandler,
uint32_t id = MQID_ANY,
MessageList* removed = nullptr) override;
void ReceiveSends() override;
// ProcessMessages will process I/O and dispatch messages until: // ProcessMessages will process I/O and dispatch messages until:
// 1) cms milliseconds have elapsed (returns true) // 1) cms milliseconds have elapsed (returns true)
// 2) Stop() is called (returns false) // 2) Stop() is called (returns false)
@ -321,6 +427,35 @@ class RTC_LOCKABLE RTC_EXPORT Thread : public MessageQueue,
#endif #endif
protected: protected:
class PriorityQueue : public std::priority_queue<DelayedMessage> {
public:
container_type& container() { return c; }
void reheap() { make_heap(c.begin(), c.end(), comp); }
};
void DoDelayPost(const Location& posted_from,
int64_t cmsDelay,
int64_t tstamp,
MessageHandler* phandler,
uint32_t id,
MessageData* pdata);
// Perform initialization, subclasses must call this from their constructor
// if false was passed as init_queue to the Thread constructor.
void DoInit();
// Does not take any lock. Must be called either while holding crit_, or by
// the destructor (by definition, the latter has exclusive access).
void ClearInternal(MessageHandler* phandler,
uint32_t id,
MessageList* removed) RTC_EXCLUSIVE_LOCKS_REQUIRED(&crit_);
// Perform cleanup; subclasses must call this from the destructor,
// and are not expected to actually hold the lock.
void DoDestroy() RTC_EXCLUSIVE_LOCKS_REQUIRED(&crit_);
void WakeUpSocketServer();
// Same as WrapCurrent except that it never fails as it does not try to // Same as WrapCurrent except that it never fails as it does not try to
// acquire the synchronization access of the thread. The caller should never // acquire the synchronization access of the thread. The caller should never
// call Stop() or Join() on this thread. // call Stop() or Join() on this thread.
@ -333,6 +468,8 @@ class RTC_LOCKABLE RTC_EXPORT Thread : public MessageQueue,
friend class ScopedDisallowBlockingCalls; friend class ScopedDisallowBlockingCalls;
CriticalSection* CritForTest() { return &crit_; }
private: private:
class QueuedTaskHandler final : public MessageHandler { class QueuedTaskHandler final : public MessageHandler {
public: public:
@ -377,6 +514,22 @@ class RTC_LOCKABLE RTC_EXPORT Thread : public MessageQueue,
// MessageLikeTask payload data. // MessageLikeTask payload data.
static MessageHandler* GetPostTaskMessageHandler(); static MessageHandler* GetPostTaskMessageHandler();
bool fPeekKeep_;
Message msgPeek_;
MessageList msgq_ RTC_GUARDED_BY(crit_);
PriorityQueue dmsgq_ RTC_GUARDED_BY(crit_);
uint32_t dmsgq_next_num_ RTC_GUARDED_BY(crit_);
CriticalSection crit_;
bool fInitialized_;
bool fDestroyed_;
volatile int stop_;
// The SocketServer might not be owned by Thread.
SocketServer* const ss_;
// Used if SocketServer ownership lies with |this|.
std::unique_ptr<SocketServer> own_ss_;
std::list<_SendMessage> sendlist_; std::list<_SendMessage> sendlist_;
std::string name_; std::string name_;
@ -437,6 +590,10 @@ class AutoSocketServerThread : public Thread {
RTC_DISALLOW_COPY_AND_ASSIGN(AutoSocketServerThread); RTC_DISALLOW_COPY_AND_ASSIGN(AutoSocketServerThread);
}; };
// TODO(srte): Remove these when all dependencies has been updated.
using MessageQueue = Thread;
using MessageQueueManager = ThreadManager;
} // namespace rtc } // namespace rtc
#endif // RTC_BASE_THREAD_H_ #endif // RTC_BASE_THREAD_H_

141
rtc_base/thread_message.h Normal file
View File

@ -0,0 +1,141 @@
/*
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef RTC_BASE_THREAD_MESSAGE_H_
#define RTC_BASE_THREAD_MESSAGE_H_
#include <list>
#include <memory>
#include <utility>
#include "api/scoped_refptr.h"
#include "rtc_base/location.h"
#include "rtc_base/message_handler.h"
namespace rtc {
// Derive from this for specialized data
// App manages lifetime, except when messages are purged
class MessageData {
public:
MessageData() {}
virtual ~MessageData() {}
};
template <class T>
class TypedMessageData : public MessageData {
public:
explicit TypedMessageData(const T& data) : data_(data) {}
const T& data() const { return data_; }
T& data() { return data_; }
private:
T data_;
};
// Like TypedMessageData, but for pointers that require a delete.
template <class T>
class ScopedMessageData : public MessageData {
public:
explicit ScopedMessageData(std::unique_ptr<T> data)
: data_(std::move(data)) {}
// Deprecated.
// TODO(deadbeef): Remove this once downstream applications stop using it.
explicit ScopedMessageData(T* data) : data_(data) {}
// Deprecated.
// TODO(deadbeef): Returning a reference to a unique ptr? Why. Get rid of
// this once downstream applications stop using it, then rename inner_data to
// just data.
const std::unique_ptr<T>& data() const { return data_; }
std::unique_ptr<T>& data() { return data_; }
const T& inner_data() const { return *data_; }
T& inner_data() { return *data_; }
private:
std::unique_ptr<T> data_;
};
// Like ScopedMessageData, but for reference counted pointers.
template <class T>
class ScopedRefMessageData : public MessageData {
public:
explicit ScopedRefMessageData(T* data) : data_(data) {}
const scoped_refptr<T>& data() const { return data_; }
scoped_refptr<T>& data() { return data_; }
private:
scoped_refptr<T> data_;
};
template <class T>
inline MessageData* WrapMessageData(const T& data) {
return new TypedMessageData<T>(data);
}
template <class T>
inline const T& UseMessageData(MessageData* data) {
return static_cast<TypedMessageData<T>*>(data)->data();
}
template <class T>
class DisposeData : public MessageData {
public:
explicit DisposeData(T* data) : data_(data) {}
virtual ~DisposeData() { delete data_; }
private:
T* data_;
};
const uint32_t MQID_ANY = static_cast<uint32_t>(-1);
const uint32_t MQID_DISPOSE = static_cast<uint32_t>(-2);
// No destructor
struct Message {
Message()
: phandler(nullptr), message_id(0), pdata(nullptr), ts_sensitive(0) {}
inline bool Match(MessageHandler* handler, uint32_t id) const {
return (handler == nullptr || handler == phandler) &&
(id == MQID_ANY || id == message_id);
}
Location posted_from;
MessageHandler* phandler;
uint32_t message_id;
MessageData* pdata;
int64_t ts_sensitive;
};
typedef std::list<Message> MessageList;
// DelayedMessage goes into a priority queue, sorted by trigger time. Messages
// with the same trigger time are processed in num_ (FIFO) order.
class DelayedMessage {
public:
DelayedMessage(int64_t delay,
int64_t trigger,
uint32_t num,
const Message& msg)
: cmsDelay_(delay), msTrigger_(trigger), num_(num), msg_(msg) {}
bool operator<(const DelayedMessage& dmsg) const {
return (dmsg.msTrigger_ < msTrigger_) ||
((dmsg.msTrigger_ == msTrigger_) && (dmsg.num_ < num_));
}
int64_t cmsDelay_; // for debugging
int64_t msTrigger_;
uint32_t num_;
Message msg_;
};
} // namespace rtc
#endif // RTC_BASE_THREAD_MESSAGE_H_

View File

@ -264,7 +264,7 @@ int32_t MediaCodecVideoDecoder::ResetDecodeOnCodecThread() {
<< ". Frames decoded: " << frames_decoded_; << ". Frames decoded: " << frames_decoded_;
inited_ = false; inited_ = false;
rtc::MessageQueueManager::Clear(this); rtc::ThreadManager::Clear(this);
ResetVariables(); ResetVariables();
Java_MediaCodecVideoDecoder_reset(jni, j_media_codec_video_decoder_, Java_MediaCodecVideoDecoder_reset(jni, j_media_codec_video_decoder_,
@ -300,7 +300,7 @@ int32_t MediaCodecVideoDecoder::ReleaseOnCodecThread() {
input_buffers_.clear(); input_buffers_.clear();
Java_MediaCodecVideoDecoder_release(jni, j_media_codec_video_decoder_); Java_MediaCodecVideoDecoder_release(jni, j_media_codec_video_decoder_);
inited_ = false; inited_ = false;
rtc::MessageQueueManager::Clear(this); rtc::ThreadManager::Clear(this);
if (CheckException(jni)) { if (CheckException(jni)) {
ALOGE << "Decoder release exception"; ALOGE << "Decoder release exception";
return WEBRTC_VIDEO_CODEC_ERROR; return WEBRTC_VIDEO_CODEC_ERROR;

View File

@ -96,7 +96,7 @@
[self.audioSession notifyDidBeginInterruption]; [self.audioSession notifyDidBeginInterruption];
// Wait for notification to propagate. // Wait for notification to propagate.
rtc::MessageQueueManager::ProcessAllMessageQueuesForTesting(); rtc::ThreadManager::ProcessAllMessageQueuesForTesting();
XCTAssertTrue(_audio_device->IsInterrupted()); XCTAssertTrue(_audio_device->IsInterrupted());
// Force it for testing. // Force it for testing.
@ -104,7 +104,7 @@
[self.audioSession notifyDidEndInterruptionWithShouldResumeSession:YES]; [self.audioSession notifyDidEndInterruptionWithShouldResumeSession:YES];
// Wait for notification to propagate. // Wait for notification to propagate.
rtc::MessageQueueManager::ProcessAllMessageQueuesForTesting(); rtc::ThreadManager::ProcessAllMessageQueuesForTesting();
XCTAssertTrue(_audio_device->IsInterrupted()); XCTAssertTrue(_audio_device->IsInterrupted());
_audio_device->Init(); _audio_device->Init();