AEC3: Multi channel ERL estimator

The estimator will simply compute the worst value of all combinations
of render and capture signal.

This has the drawback that low-volume or silent render channels may
severely misestimate the ERL.

The changes have been shown to be bitexact over a large dataset.

Bug: webrtc:10913
Change-Id: Id53c3ab81646ac0fab303edafc5e38892d285d8e
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/157308
Commit-Queue: Sam Zackrisson <saza@webrtc.org>
Reviewed-by: Per Åhgren <peah@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#29542}
This commit is contained in:
Sam Zackrisson 2019-10-18 16:49:13 +02:00 committed by Commit Bot
parent 33ed88287f
commit 6e5433c4d4
5 changed files with 134 additions and 52 deletions

View File

@ -230,11 +230,9 @@ void AecState::Update(
avg_render_spectrum_with_reverb, Y2, E2_main,
subtractor_output_analyzer_.ConvergedFilters());
// TODO(bugs.webrtc.org/10913): Take all channels into account.
const auto& X2 = render_buffer.Spectrum(
delay_state_.MinDirectPathFilterDelay())[/*channel=*/0];
erl_estimator_.Update(subtractor_output_analyzer_.ConvergedFilters()[0], X2,
Y2[0]);
erl_estimator_.Update(
subtractor_output_analyzer_.ConvergedFilters(),
render_buffer.Spectrum(delay_state_.MinDirectPathFilterDelay()), Y2);
// Detect and flag echo saturation.
saturation_detector_.Update(aligned_render_block, SaturatedCapture(),

View File

@ -106,7 +106,9 @@ void RunNormalUsageTest(size_t num_render_channels,
EXPECT_FALSE(state.UsableLinearEstimate());
// Verify that the active render detection works as intended.
std::fill(x[0][0].begin(), x[0][0].end(), 101.f);
for (size_t ch = 0; ch < num_render_channels; ++ch) {
std::fill(x[0][ch].begin(), x[0][ch].end(), 101.f);
}
render_delay_buffer->Insert(x);
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
subtractor_output[ch].ComputeMetrics(y[ch]);
@ -136,7 +138,9 @@ void RunNormalUsageTest(size_t num_render_channels,
}
}
x[0][0][0] = 5000.f;
for (size_t ch = 0; ch < num_render_channels; ++ch) {
x[0][ch][0] = 5000.f;
}
for (size_t k = 0;
k < render_delay_buffer->GetRenderBuffer()->GetFftBuffer().size(); ++k) {
render_delay_buffer->Insert(x);

View File

@ -39,20 +39,69 @@ void ErlEstimator::Reset() {
}
void ErlEstimator::Update(
bool converged_filter,
rtc::ArrayView<const float, kFftLengthBy2Plus1> render_spectrum,
rtc::ArrayView<const float, kFftLengthBy2Plus1> capture_spectrum) {
const auto& X2 = render_spectrum;
const auto& Y2 = capture_spectrum;
const std::vector<bool>& converged_filters,
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> render_spectra,
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
capture_spectra) {
const size_t num_capture_channels = converged_filters.size();
RTC_DCHECK_EQ(capture_spectra.size(), num_capture_channels);
// Corresponds to WGN of power -46 dBFS.
constexpr float kX2Min = 44015068.0f;
const auto first_converged_iter =
std::find(converged_filters.begin(), converged_filters.end(), true);
const bool any_filter_converged =
first_converged_iter != converged_filters.end();
if (++blocks_since_reset_ < startup_phase_length_blocks__ ||
!converged_filter) {
!any_filter_converged) {
return;
}
// Use the maximum spectrum across capture and the maximum across render.
std::array<float, kFftLengthBy2Plus1> max_capture_spectrum_data;
std::array<float, kFftLengthBy2Plus1> max_capture_spectrum =
capture_spectra[/*channel=*/0];
if (num_capture_channels > 1) {
// Initialize using the first channel with a converged filter.
const size_t first_converged =
std::distance(converged_filters.begin(), first_converged_iter);
RTC_DCHECK_GE(first_converged, 0);
RTC_DCHECK_LT(first_converged, num_capture_channels);
max_capture_spectrum_data = capture_spectra[first_converged];
for (size_t ch = first_converged + 1; ch < num_capture_channels; ++ch) {
if (!converged_filters[ch]) {
continue;
}
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
max_capture_spectrum_data[k] =
std::max(max_capture_spectrum_data[k], capture_spectra[ch][k]);
}
}
max_capture_spectrum = max_capture_spectrum_data;
}
const size_t num_render_channels = render_spectra.size();
std::array<float, kFftLengthBy2Plus1> max_render_spectrum_data;
rtc::ArrayView<const float, kFftLengthBy2Plus1> max_render_spectrum =
render_spectra[/*channel=*/0];
if (num_render_channels > 1) {
std::copy(render_spectra[0].begin(), render_spectra[0].end(),
max_render_spectrum_data.begin());
for (size_t ch = 1; ch < num_render_channels; ++ch) {
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
max_render_spectrum_data[k] =
std::max(max_render_spectrum_data[k], render_spectra[ch][k]);
}
}
max_render_spectrum = max_render_spectrum_data;
}
const auto& X2 = max_render_spectrum;
const auto& Y2 = max_capture_spectrum;
// Update the estimates in a maximum statistics manner.
for (size_t k = 1; k < kFftLengthBy2; ++k) {
if (X2[k] > kX2Min) {

View File

@ -14,6 +14,7 @@
#include <stddef.h>
#include <array>
#include <vector>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
@ -31,9 +32,11 @@ class ErlEstimator {
void Reset();
// Updates the ERL estimate.
void Update(bool converged_filter,
rtc::ArrayView<const float, kFftLengthBy2Plus1> render_spectrum,
rtc::ArrayView<const float, kFftLengthBy2Plus1> capture_spectrum);
void Update(const std::vector<bool>& converged_filters,
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
render_spectra,
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
capture_spectra);
// Returns the most recent ERL estimate.
const std::array<float, kFftLengthBy2Plus1>& Erl() const { return erl_; }

View File

@ -10,11 +10,19 @@
#include "modules/audio_processing/aec3/erl_estimator.h"
#include "rtc_base/strings/string_builder.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
std::string ProduceDebugText(size_t num_render_channels,
size_t num_capture_channels) {
rtc::StringBuilder ss;
ss << "Render channels: " << num_render_channels;
ss << ", Capture channels: " << num_capture_channels;
return ss.Release();
}
void VerifyErl(const std::array<float, kFftLengthBy2Plus1>& erl,
float erl_time_domain,
@ -28,45 +36,65 @@ void VerifyErl(const std::array<float, kFftLengthBy2Plus1>& erl,
// Verifies that the correct ERL estimates are achieved.
TEST(ErlEstimator, Estimates) {
std::array<float, kFftLengthBy2Plus1> X2;
std::array<float, kFftLengthBy2Plus1> Y2;
for (size_t num_render_channels : {1, 2, 8}) {
for (size_t num_capture_channels : {1, 2, 8}) {
SCOPED_TRACE(ProduceDebugText(num_render_channels, num_capture_channels));
std::vector<std::array<float, kFftLengthBy2Plus1>> X2(
num_render_channels);
for (auto& X2_ch : X2) {
X2_ch.fill(0.f);
}
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(
num_capture_channels);
for (auto& Y2_ch : Y2) {
Y2_ch.fill(0.f);
}
std::vector<bool> converged_filters(num_capture_channels, false);
const size_t converged_idx = num_capture_channels - 1;
converged_filters[converged_idx] = true;
ErlEstimator estimator(0);
ErlEstimator estimator(0);
// Verifies that the ERL estimate is properly reduced to lower values.
X2.fill(500 * 1000.f * 1000.f);
Y2.fill(10 * X2[0]);
for (size_t k = 0; k < 200; ++k) {
estimator.Update(true, X2, Y2);
// Verifies that the ERL estimate is properly reduced to lower values.
for (auto& X2_ch : X2) {
X2_ch.fill(500 * 1000.f * 1000.f);
}
Y2[converged_idx].fill(10 * X2[0][0]);
for (size_t k = 0; k < 200; ++k) {
estimator.Update(converged_filters, X2, Y2);
}
VerifyErl(estimator.Erl(), estimator.ErlTimeDomain(), 10.f);
// Verifies that the ERL is not immediately increased when the ERL in the
// data increases.
Y2[converged_idx].fill(10000 * X2[0][0]);
for (size_t k = 0; k < 998; ++k) {
estimator.Update(converged_filters, X2, Y2);
}
VerifyErl(estimator.Erl(), estimator.ErlTimeDomain(), 10.f);
// Verifies that the rate of increase is 3 dB.
estimator.Update(converged_filters, X2, Y2);
VerifyErl(estimator.Erl(), estimator.ErlTimeDomain(), 20.f);
// Verifies that the maximum ERL is achieved when there are no low RLE
// estimates.
for (size_t k = 0; k < 1000; ++k) {
estimator.Update(converged_filters, X2, Y2);
}
VerifyErl(estimator.Erl(), estimator.ErlTimeDomain(), 1000.f);
// Verifies that the ERL estimate is is not updated for low-level signals
for (auto& X2_ch : X2) {
X2_ch.fill(1000.f * 1000.f);
}
Y2[converged_idx].fill(10 * X2[0][0]);
for (size_t k = 0; k < 200; ++k) {
estimator.Update(converged_filters, X2, Y2);
}
VerifyErl(estimator.Erl(), estimator.ErlTimeDomain(), 1000.f);
}
}
VerifyErl(estimator.Erl(), estimator.ErlTimeDomain(), 10.f);
// Verifies that the ERL is not immediately increased when the ERL in the data
// increases.
Y2.fill(10000 * X2[0]);
for (size_t k = 0; k < 998; ++k) {
estimator.Update(true, X2, Y2);
}
VerifyErl(estimator.Erl(), estimator.ErlTimeDomain(), 10.f);
// Verifies that the rate of increase is 3 dB.
estimator.Update(true, X2, Y2);
VerifyErl(estimator.Erl(), estimator.ErlTimeDomain(), 20.f);
// Verifies that the maximum ERL is achieved when there are no low RLE
// estimates.
for (size_t k = 0; k < 1000; ++k) {
estimator.Update(true, X2, Y2);
}
VerifyErl(estimator.Erl(), estimator.ErlTimeDomain(), 1000.f);
// Verifies that the ERL estimate is is not updated for low-level signals
X2.fill(1000.f * 1000.f);
Y2.fill(10 * X2[0]);
for (size_t k = 0; k < 200; ++k) {
estimator.Update(true, X2, Y2);
}
VerifyErl(estimator.Erl(), estimator.ErlTimeDomain(), 1000.f);
}
} // namespace webrtc